

saturation

T.Takeshita (Shinsu) for CALICE-ASIA

scintillator tungsten scintillator

Scintillator ECAL

- Strip Scintillator ECAL for ILC
- PFA requires highly granular ECAL 5mm
- to accommodate within reasonable cost
- scintillator strip ECAL with orthogonal directions to achieve fine segmentation

silicon photo-senso

- a lot of APD cells operated in G. Mode
- MPPC by Hamamatsu Photonics
- photon counting with number of pixels firing
- simultaneous photos in a pixel will give single firing

saturation in MPPC saturation occurs when lots of photons in

- saturation occurs when lots of photons in a very short time $N_{fired} = N_{p0}(1 \exp(\frac{-p1Ntrue}{N}))$
- Bias voltage recovers in short time ~ 4ns
- more than numb. of pix

non-linear behavior

Npix=1600 calculation $N_{\text{pix}} = 1500$ $N_{\text{fired}} = N_{\text{pix}} (1 - e^{-N_{\text{pe}}/N_{\text{pix}}})$ $N_{\text{pix}} = 1000$ $N_{\text{pix}} = 10000$ $N_{\text{pix}} = 1000$ $N_{\text{pix}} = 1000$ $N_{\text{pix}} = 10000$ $N_{\text{pix}} = 10000$

saturation and linearity

- we expected saturation due to its operation mode
- however, somewhat different nature
- due to time spread of light source
- · indeed
- calorimeter
- has linearity

charge integra tion in

LASER

recovering of Geiger M laser light in

tested by blue laser light

Vbias

recovering of Geiger M laser light in

Vbias

recovering of Geiger M laser light in

Vbias

ready for

ILC ECAL

effect of saturation on the EM-Calorimeter

Dynamic range : electronics & Photon sensor

15bit ADC for electronics 3000MIPS ~ 30000 pixels at maximum

solution

- increase the number of pixels
- smaller pitch size, 25>20>15 μm
- number of pixels / mm²

pitch 25µm 23%

loose acceptance

pitch 20µm 12%

pitch 15µm 10%

linearity test by LED

study of non-linearity

variation in 72 scintillator strips and MPPCs

they are tested at the FNAL beam for

scintillator ECAL

rels

saturation

- •GM photo-sensor was believed to have complete saturation phenomena However
- having a huge amount of photons in some time span, its response looks linear
- energy measurement can be recovered as far as we control the response we look into the leading edge of signal

normal signal

saturating signal

timing resolution

setup

amount of light is not small

timing resolution

35 ~ 45 ps in rms

summary

- linearity up to 30000 pixels is seen ~ 500GeV Bhabha
- saturation phenomena is understudy
- fine ~40ps timing resolution is found
- good for CLIC
- * test at low number of photons ~ 1 MIP is under dev.
- with a scintillator strip
- Scintillator ECAL can be a good candidate for ILC calorimeter

saturation found

$$\begin{split} N_{\textit{fired}} &= N_{\textit{pix}} \left(1 - \exp \left(\frac{N_{\textit{true}}}{N_{\textit{pix}}} \right) \right) \\ \text{Fit function} \\ Output_{\textit{MPPC}} &= \text{p0} \left(1 - \exp \left(\frac{\text{p1} \times Output_{\textit{PMT}}}{\text{p0}} \right) \right) \end{split}$$

saturation

