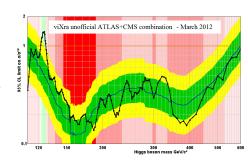
Determination of sparicle properties in SUSY scenarios with small mass differences at the ILC In the light of LHC 7 TeV

Mikael Berggren¹

¹DESY, Hamburg


KILC12, Daegu, S. Korea, April 23, 2012

Outline

- LHC and SUSY
- New bench-mark points
- SPS1a'/TDR 1-4
- 4 The $\tilde{\tau}$ channel
 - Selection
 - Mass and cross-section
- $\mathbf{0}$ μ channels
 - \bullet $\tilde{\mu}_{\rm L}\tilde{\mu}_{\rm L}$
 - $\tilde{\chi}_1^0 \tilde{\chi}_2^0$
- 6 The e channel
 - The standard SPS1a' e channel
 - Mass and cross-section
- Summary and outlook

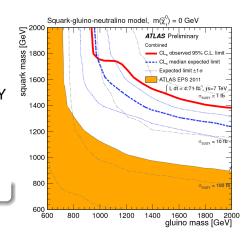
- The Higgs: Extremely in-official theoretician combination from S. Heinemeyer ...
- ... and it's implication for SUSY models (from A. Djouadi).
- Limits in CMSSM (ATLAS)
- Limits in simplified model

ls SHSY under pressure ??

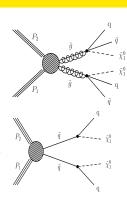
- The Higgs: Extremely in-official theoretician combination from S. Heinemeyer ...
- ... and it's implication for SUSY models (from A. Djouadi).
- Limits in CMSSM (ATLAS)
- Limits in simplified model

- The Higgs: Extremely in-official theoretician combination from S. Heinemeyer ...
- ... and it's implication for SUSY models (from A. Djouadi).
- Limits in CMSSM (ATLAS)
- Limits in simplified model

Is SUSY under pressure ??

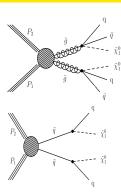

- The Higgs: Extremely in-official theoretician combination from S. Heinemeyer ...
- ... and it's implication for SUSY models (from A. Djouadi).
- Limits in CMSSM (ATLAS)
- Limits in simplified model

Is SUSY under pressure ??

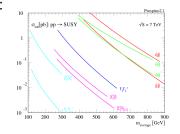


- The Higgs: Extremely in-official theoretician combination from S. Heinemeyer ...
- ... and it's implication for SUSY models (from A. Djouadi).
- Limits in CMSSM (ATLAS)
- Limits in simplified model

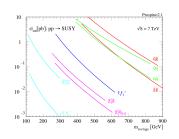
Is SUSY under pressure ??


- Simplified models are (very) special cases: no cascades
- CMSSM is also a (very) special case: coloured sector ↔ non-coloured sector.
- Production needs a gluino in reach.
- Only generation 1 & 2 squraks (not much t and b in protons!)
- But what matters for naturalness is the third generation:
 - M_H is destabilised by fermion-loops
 - but boson-loops have the same size but opposite sign
 - - For this to work: $M_{particle} \approx M_{sparticle}$

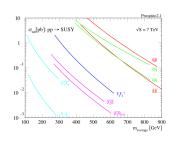
Sparticles at ILC

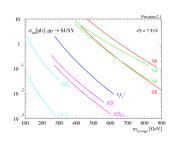

- Simplified models are (very) special cases: no cascades
- CMSSM is also a (very) special case: coloured sector ↔ non-coloured sector.
- Production needs a gluino in reach
- Only generation 1 & 2 squraks (not much t and b in protons!)
- But what matters for naturalness is the third generation:
 - M_H is destabilised by fermion-loops
 - but boson-loops have the same size but opposite sign

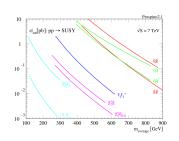
 - ullet For this to work: $M_{particle} pprox M_{sparticle}$

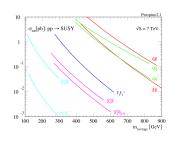


- Simplified models are (very) special cases: no cascades
- CMSSM is also a (very) special case: coloured sector
 ↔ non-coloured sector.
- Production needs a gluino in reach.
- Only generation 1 & 2 squraks (not much t and b in protons!)
- But what matters for naturalness is the third generation:
 - \bullet M_H is destabilised by fermion-loops
 - but boson-loops have the same size
 - but opposite sign

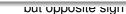

 - For this to work: $M_{particle} \approx M_{sparticle}$


- Simplified models are (very) special cases: no cascades
- CMSSM is also a (very) special case: coloured sector
 ↔ non-coloured sector.
- Production needs a gluino in reach.
- Only generation 1 & 2 squraks (not much t and b in protons!)
- But what matters for naturalness is the third generation:
 - M_H is destabilised by fermion-loops
 - but boson-loops have the same size but opposite sign
 - ⇒ Divergences cancel!
 - For this to work: $M_{particle} \approx M_{sparticle}$

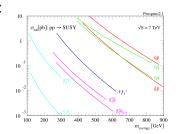

- Simplified models are (very) special cases: no cascades
- Production needs a gluino in reach.
- Only generation 1 & 2 squraks (not much t and b in protons!)
- But what matters for naturalness is the third generation:
 - M_H is destabilised by fermion-loops
 - but boson-loops have the same size but opposite sign
 - ⇒ Divergences cancel!
 - For this to work: $M_{particle} \approx M_{sparticle}$


- Simplified models are (very) special cases: no cascades
- Production needs a gluino in reach.
- Only generation 1 & 2 squraks (not much t and b in protons!)
- But what matters for naturalness is the third generation:
 - M_H is destabilised by fermion-loops
 - but boson-loops have the same size but opposite sign
 - ⇒ Divergences cancel!
 - For this to work: $M_{particle} \approx M_{sparticle}$

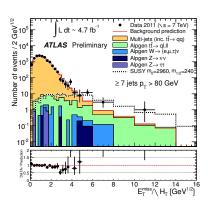
- Simplified models are (very) special cases: no cascades
- Production needs a gluino in reach.
- Only generation 1 & 2 squraks (not much t and b in protons!)
- But what matters for naturalness is the third generation:
 - M_H is destabilised by fermion-loops
 - but boson-loops have the same size but opposite sign
 - ⇒ Divergences cancel!
 - For this to work: $M_{particle} \approx M_{sparticle}$



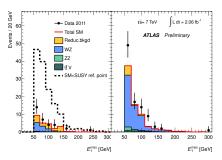
- Simplified models are (very) special cases: no cascades
- Production needs a gluino in reach.
- Only generation 1 & 2 squraks (not much t and b in protons!)
- But what matters for naturalness is the third generation:
 - M_H is destabilised by fermion-loops
 - but boson-loops have the same size but opposite sign
 - ⇒ Divergences cancel!
 - For this to work: $M_{particle} \approx M_{sparticle}$
 - Higgs coupling \propto Mass \Rightarrow what

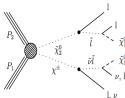


- Simplified models are (very) special cases: no cascades
- Production needs a gluino in reach.
- Only generation 1 & 2 squraks (not much t and b in protons!)
- But what matters for naturalness is the third generation:
 - M. is dostabilised by formion-loops

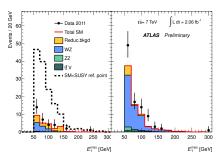


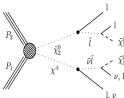
- ⇒ Divergences cancel!
- For this to work: $M_{particle} \approx M_{sparticle}$


LHC: SUSY hints?


- ATLAS multi-jets: tantalising excess for MET + many jets (starting at 7)
- ATLAS bosinos to Z: 3 leptons+ MET, two leptons from Z: 95 seen, 72 ± 14 expected. Cascade $\tilde{\chi}_2^0$ or $\tilde{\chi}_1^{\pm} \rightarrow \text{IVB}$?
- And after all: The Higgs: A 115 to 130:ish Higgs is what SUSY predicts. No Higgs would be a blow for SUSY as well as the SM.

LHC: SUSY hints?


- ATLAS multi-jets: tantalising excess for MET + many jets (starting at 7)
- ATLAS bosinos to Z: 3 leptons+ MET, two leptons from Z: 95 seen, 72 ± 14 expected. Cascade $\tilde{\chi}_2^0$ or $\tilde{\chi}_1^{\pm} \rightarrow \text{IVB}$?
- And after all: The Higgs: A 115 to 130:ish Higgs is what SUSY predicts. No Higgs would be a blow for SUSY as well as the SM.



LHC: SUSY hints?

- ATLAS multi-jets: tantalising excess for MET + many jets (starting at 7)
- ATLAS bosinos to Z: 3 leptons+ MET, two leptons from Z: 95 seen, 72 ± 14 expected. Cascade $\tilde{\chi}_2^0$ or $\tilde{\chi}_1^{\pm} \rightarrow \text{IVB}$?
- And after all: The Higgs: A 115 to 130:ish Higgs is what SUSY predicts. No Higgs would be a blow for SUSY as well as the SM.

Remember, apart from naturalness:

- Anomaly in g-2 of the μ : Would prefer a not-too-heavy smuon.
- ullet Dark matter: A WIMP of \sim 100 GeVwould be needed.
- EW symmetry breaking, coupling constant unification: points to NP at or below 1 TeV
- Suppress the SUSY flavour problem (FCNC:s etc): Heavy 1:st & 2:nd generation squarks would be nice ...
- Other low-energy constrains : $b \to s \gamma, b \to \mu \mu, \rho$ -parameter, $\Gamma(Z)$

Remember, apart from naturalness:

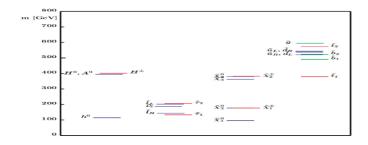
- Anomaly in g-2 of the μ : Would prefer a not-too-heavy smuon.
- Dark matter: A WIMP of ~ 100 GeVwould be needed.
- EW symmetry breaking, coupling constant unification: points to NP at or below 1 TeV
- Suppress the SUSY flavour problem (FCNC:s etc): Heavy 1:st & 2:nd generation squarks would be nice ...
- Other low-energy constrains : $b \to s \gamma, b \to \mu \mu, \rho$ -parameter, $\Gamma(Z)$

Remember, apart from naturalness:

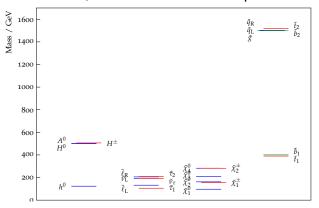
- Anomaly in g-2 of the μ : Would prefer a not-too-heavy smuon.
- Dark matter: A WIMP of ~ 100 GeVwould be needed.
- EW symmetry breaking, coupling constant unification: points to NP at or below 1 TeV
- Suppress the SUSY flavour problem (FCNC:s etc): Heavy 1:st & 2:nd generation squarks would be nice ...
- Other low-energy constrains : $b \to s \gamma, b \to \mu \mu, \rho$ -parameter, $\Gamma(Z)$

Remember, apart from naturalness:

- Anomaly in g-2 of the μ : Would prefer a not-too-heavy smuon.
- Dark matter: A WIMP of ~ 100 GeVwould be needed.
- EW symmetry breaking, coupling constant unification: points to NP at or below 1 TeV
- Suppress the SUSY flavour problem (FCNC:s etc): Heavy 1:st & 2:nd generation squarks would be nice ...
- Other low-energy constrains : $b \to s\gamma$, $b \to \mu\mu$, ρ -parameter, $\Gamma(Z)$


Remember, apart from naturalness:

- Anomaly in g-2 of the μ : Would prefer a not-too-heavy smuon.
- Dark matter: A WIMP of ~ 100 GeVwould be needed.
- EW symmetry breaking, coupling constant unification: points to NP at or below 1 TeV
- Suppress the SUSY flavour problem (FCNC:s etc): Heavy 1:st & 2:nd generation squarks would be nice ...
- Other low-energy constrains : $b \to s\gamma$, $b \to \mu\mu$, ρ -parameter, $\Gamma(Z)$


Can all this be provided by SUSY? Yes, sure!

Can all this be provided by SUSY? Yes, sure!

Can all this be provided by SUSY? Yes, sure!

Can all this be provided by SUSY ? Yes, sure!

Can all this be provided by SUSY ? Yes, sure!

Take SPS1a, and make the TDR 1-4 points

How?

SPS1a: mSUGRA

- 5 parameters.
- One gaugino parameter
- One scalar parameter

TDR1: natural SUSY

- 11 parameters.
- Separate gluino
- Higgs, un-coloured, and coloured scalar parameters separate

Parameters chosen to deliver all constraints, \approx same ILC accessible spectrum.

- In SPS1a' and the TDR points, the $\tilde{\tau}_1$ is the NLSP.
- For $\tilde{\tau}_1$: $E_{\tau,min} = 2.6 \text{ GeV}$, $E_{\tau,max} = 42.5 \text{ GeV}$: $\gamma \gamma background \Leftrightarrow pairs background$.
- For $\tilde{\tau}_2$: $E_{\tau,min} = 35.0 \text{ GeV}$, $E_{\tau,max} = 152.2 \text{ GeV}$: $WW \rightarrow l\nu l\nu$ background \Leftrightarrow *Polarisation*.
- $\tilde{\tau}$ NLSP $\to \tau$:s in most SUSY decays \to SUSY is background to SUSY.
- For pol=(-1,1): $\sigma(\tilde{\chi}_2^0\tilde{\chi}_2^0)$ and $\sigma(\tilde{\chi}_1^+\tilde{\chi}_1^-)$ = several hundred fb and BR(X \rightarrow $\tilde{\tau}$) > 50 %. For pol=(1,-1): $\sigma(\tilde{\chi}_2^0\tilde{\chi}_2^0)$ and $\sigma(\tilde{\chi}_1^+\tilde{\chi}_1^-)\approx 0$.
- For pol=(-1,1): $\sigma(\tilde{e}_R \tilde{e}_R) = 1.3 \text{ pb} !$
- For \tilde{e}_R or $\tilde{\mu}_R$: $E_{l,min}=6.6~{\rm GeV}, E_{l,max}=91.4~{\rm GeV}$: Neither $\gamma\gamma$ nor $WW \to l\nu l\nu$ background severe.

- In SPS1a' and the TDR points, the $\tilde{\tau}_1$ is the NLSP.
- For $\tilde{\tau}_1$: $E_{\tau,min} = 2.6 \text{ GeV}$, $E_{\tau,max} = 42.5 \text{ GeV}$: $\gamma \gamma background \Leftrightarrow pairs background$.
- For $\tilde{\tau}_2$: $E_{\tau,min} = 35.0 \text{ GeV}$, $E_{\tau,max} = 152.2 \text{ GeV}$: $WW \rightarrow l\nu l\nu$ background \Leftrightarrow *Polarisation*.
- $\tilde{\tau}$ NLSP $\to \tau$:s in most SUSY decays \to SUSY is background to SUSY.
- For pol=(-1,1): $\sigma(\tilde{\chi}_2^0\tilde{\chi}_2^0)$ and $\sigma(\tilde{\chi}_1^+\tilde{\chi}_1^-)$ = several hundred fb and BR(X \rightarrow $\tilde{\tau}$) > 50 %. For pol=(1,-1): $\sigma(\tilde{\chi}_2^0\tilde{\chi}_2^0)$ and $\sigma(\tilde{\chi}_1^+\tilde{\chi}_1^-)\approx 0$.
- For pol=(-1,1): $\sigma(\tilde{e}_R \tilde{e}_R) = 1.3 \text{ pb} !$
- For \tilde{e}_R or $\tilde{\mu}_R$: $E_{l,min}=6.6~{\rm GeV}, E_{l,max}=91.4~{\rm GeV}$: Neither $\gamma\gamma$ nor $WW \to l\nu l\nu$ background severe.

- In SPS1a' and the TDR points, the $\tilde{\tau}_1$ is the NLSP.
- For $\tilde{\tau}_1$: $E_{\tau,min} = 2.6 \text{ GeV}$, $E_{\tau,max} = 42.5 \text{ GeV}$: $\gamma \gamma background \Leftrightarrow pairs background$.
- For $\tilde{\tau}_2$: $E_{\tau,min} = 35.0 \text{ GeV}$, $E_{\tau,max} = 152.2 \text{ GeV}$: $WW \rightarrow l\nu l\nu$ background \Leftrightarrow *Polarisation*.
- $\tilde{\tau}$ NLSP $\to \tau$:s in most SUSY decays \to SUSY is background to SUSY.
- For pol=(-1,1): $\sigma(\tilde{\chi}_2^0\tilde{\chi}_2^0)$ and $\sigma(\tilde{\chi}_1^+\tilde{\chi}_1^-)$ = several hundred fb and BR(X \rightarrow $\tilde{\tau}$) > 50 %. For pol=(1,-1): $\sigma(\tilde{\chi}_2^0\tilde{\chi}_2^0)$ and $\sigma(\tilde{\chi}_1^+\tilde{\chi}_1^-)\approx 0$.
- For pol=(-1,1): $\sigma(\tilde{e}_R \tilde{e}_R) = 1.3 \text{ pb} !$
- For \tilde{e}_R or $\tilde{\mu}_R$: $E_{l,min}=6.6~{\rm GeV}, E_{l,max}=91.4~{\rm GeV}$: Neither $\gamma\gamma$ nor $WW \to l\nu l\nu$ background severe.

- In SPS1a' and the TDR points, the $\tilde{\tau}_1$ is the NLSP.
- For $\tilde{\tau}_1$: $E_{\tau.min} = 2.6 \text{ GeV}$, $E_{\tau.max} = 42.5 \text{ GeV}$:

Once again: SPS1a' is excluded by LHC, but:

- LHC only excludes 1:st & 2:nd generation squarks. : not visible at ILC anyhow.
- The current LHC limits have no influence at all on the EW sector.
- TDR 1-4 has the same EW-sector, but heavier gen. 1&2 squarks. Any ILC result on SPS1a is also good for TDR 1-4
- For pol=(-1,1): $\sigma(\tilde{e}_R \tilde{e}_R) = 1.3 \text{ pb} !$
- For \tilde{e}_R or $\tilde{\mu}_R$: $E_{l,min}=6.6~{\rm GeV}, E_{l,max}=91.4~{\rm GeV}$: Neither $\gamma\gamma$ nor $WW \to l\nu l\nu$ background severe.

Extracting the $\tilde{\tau}$ properties

See Phys.Rev.D82:055016,2010

Use polarisation (0.8,-0.22) to reduce bosino background.

From decay kinematics:

- $M_{\tilde{\tau}}$ from end-point of spectrum = $E_{\tau,max}$.
- Other end-point hidden in $\gamma\gamma$ background: Must get $M_{\tilde{\chi}_1^0}$ from other sources. ($\tilde{\mu}$, $\tilde{\rm e}$...)

From cross-section:

•
$$\sigma_{\widetilde{\tau}} = A(\theta_{\widetilde{\tau}}, \mathcal{P}_{beam}) \times \beta^3/s$$
, so

•
$$M_{\widetilde{\tau}} = E_{beam} \sqrt{1 - (\sigma s/A)^{2/3}}$$
: no $M_{\widetilde{\chi}_1^0}$!

From decay spectra:

• \mathcal{P}_{τ} from exclusive τ decay-mode(s): handle on mixing angles $\theta_{\widetilde{\tau}}$ and $\theta_{\widetilde{\chi}_{1}^{0}}$.

Topology selection

$\tilde{\tau}$ properties:

- Only two τ :s in the final state.
- Large missing energy and momentum.
- High Acolinearity, with little correlation to the energy of the τ decay-products.
- Central production.
- No forward-backward asymmetry.

+ anti $\gamma\gamma$ cuts (see backup)

Select this by

- Exactly two jets.
- $N_{ch} < 10$
- Vanishing total charge.
- Charge of each jet = ± 1 ,
- $M_{iet} < 2.5 \text{ GeV}/c^2$,
- $E_{vis} < 300 \text{ GeV}$,
- $M_{miss} > 250 \text{ GeV}/c^2$,
- No particle with momentum above 180 GeV/c in the event

Topology selection

$\tilde{\tau}$ properties:

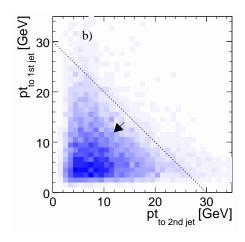
- Only two τ :s in the final state.
- Large missing energy and momentum.
- High Acolinearity, with little correlation to the energy of the τ decay-products.
- Central production.
- No forward-backward asymmetry.

+ anti $\gamma\gamma$ cuts (see backup)

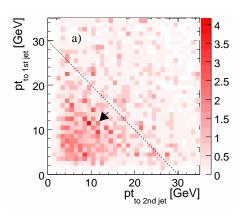
Select this by:

- Exactly two jets.
- $N_{ch} < 10$
- Vanishing total charge.
- Charge of each jet = ± 1 ,
- $M_{iet} < 2.5 \text{ GeV}/c^2$,
- E_{vis} < 300 GeV,
- $M_{miss} > 250 \text{ GeV}/c^2$,
- No particle with momentum above 180 GeV/c in the event.

Topology selection

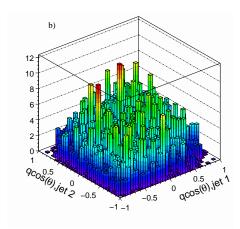

$\tilde{\tau}$ properties:

- Only two τ :s in the final state.
- Large missing energy and momentum.
- High Acolinearity, with little correlation to the energy of the τ decay-products.
- Central production.
- No forward-backward asymmetry.
- + anti $\gamma\gamma$ cuts (see backup)

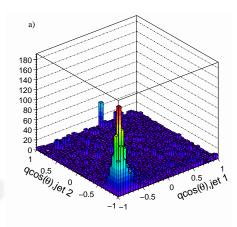

Select this by:

- Exactly two jets.
- $N_{ch} < 10$
- Vanishing total charge.
- Charge of each jet = ± 1 ,
- $M_{iet} < 2.5 \text{ GeV}/c^2$,
- E_{vis} < 300 GeV,
- $M_{miss} > 250 \text{ GeV}/c^2$,
- No particle with momentum above 180 GeV/c in the event.

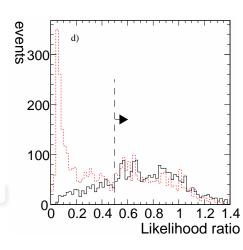
- τ̃₁:
 - $(E_{jet1} + E_{jet2}) \sin \theta_{acop} < 30 \text{ GeV}$.
- τ̃₂:
 - Other side jet not e or μ
 - Most energetic jet not e or μ
 - Cut on Signal-SM LR of $f(q_{jet1} cos\theta_{jet1}, q_{jet2} cos\theta_{jet2})$

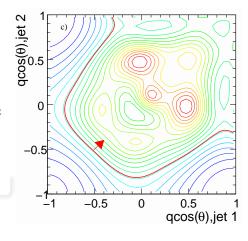


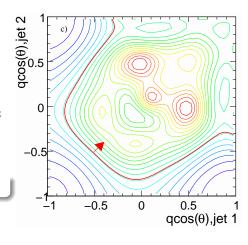
- \bullet $\tilde{\tau}_1$:
 - $(E_{jet1} + E_{jet2}) \sin \theta_{acop} < 30 \text{ GeV}.$
- τ̃₂:
 - Other side jet not e or μ
 - Most energetic jet not e or μ
 - Cut on Signal-SM LR of f(q_{jet1} cosθ_{jet1}, q_{jet2}cosθ_{jet2})



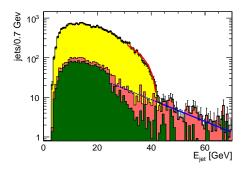
- \bullet $\tilde{\tau}_1$:
 - $(E_{jet1} + E_{jet2}) \sin \theta_{acop} < 30 \text{ GeV}.$
- τ


 ₂:
 - Other side jet not e or μ
 - Most energetic jet not e or μ
 - Cut on Signal-SM LR of $f(q_{jet1}cos\theta_{jet1}, q_{jet2}cos\theta_{jet2})$

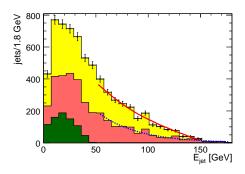

- \bullet $\tilde{\tau}_1$:
 - $(E_{jet1} + E_{jet2}) \sin \theta_{acop} < 30 \text{ GeV}.$
- \bullet $\tilde{\tau}_2$:
 - Other side jet not e or μ
 - Most energetic jet not e or μ
 - Cut on Signal-SM LR of f(q_{jet1} cosθ_{jet1}, q_{jet2} cosθ_{jet2})


- \bullet $\tilde{\tau}_1$:
 - $(E_{jet1} + E_{jet2}) \sin \theta_{acop} < 30 \text{ GeV}.$
- τ̃₂:
 - Other side jet not e or μ
 - Most energetic jet not e or μ
 - Cut on Signal-SM LR of f(q_{iet1} cosθ_{iet1}, q_{iet2} cosθ_{iet2})

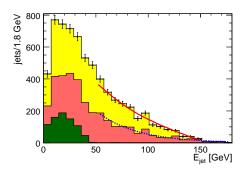
- \bullet $\tilde{\tau}_1$:
 - $(E_{jet1} + E_{jet2}) \sin \theta_{acop} < 30 \text{ GeV}.$
- τ̃₂:
 - Other side jet not e or μ
 - Most energetic jet not e or μ
 - Cut on Signal-SM LR of f(q_{iet1} cosθ_{jet1}, q_{iet2}cosθ_{jet2})



- τ̃₁:
 - $(E_{jet1} + E_{jet2}) \sin \theta_{acop} < 30 \text{ GeV}.$
- τ̃₂:
 - Other side jet not e or μ
 - Most energetic jet not e or μ
 - Cut on Signal-SM LR of f(q_{jet1} cosθ_{jet1}, q_{jet2} cosθ_{jet2})



- Only the upper end-point is relevant.
- Background subtraction:
 - $\tilde{\tau}_1$: Substantial SUSY background,but region above 45 GeV is signal free. Fit exponential and extrapolate.
 - $\tilde{\tau}_2$: \sim no SUSY background above 45 GeV. Take background from SM-only simulation and fit exponential.
- Fit line to (data-background fit).


- Only the upper end-point is relevant.
- Background subtraction:
 - $\tilde{\tau}_1$: Substantial SUSY background,but region above 45 GeV is signal free. Fit exponential and extrapolate.
 - $\tilde{\tau}_2$: \sim no SUSY background above 45 GeV. Take background from SM-only simulation and fit exponential.
- Fit line to (data-background fit).

- Only the upper end-point is relevant.
- Background subtraction:
 - $\tilde{\tau}_1$: Substantial SUSY background,but region above 45 GeV is signal free. Fit exponential and extrapolate.
 - $\tilde{\tau}_2$: \sim no SUSY background above 45 GeV. Take background from SM-only simulation and fit exponential.
- Fit line to (data-background fit).

- Only the upper end-point is relevant.
- Background subtraction:
 - $\tilde{\tau}_1$: Substantial SUSY background,but region above 45 GeV is signal free. Fit exponential and extrapolate.
 - $\tilde{\tau}_2$: \sim no SUSY background above 45 GeV. Take background from SM-only simulation and fit exponential.
- Fit line to (data-background fit).

 Only the upper end-point is relevant.

Results for $\tilde{\tau}_1$

$$M_{\tilde{ au}_1} = 107.73^{+0.03}_{-0.05} \,\mathrm{GeV}/c^2 \oplus 1.3\Delta(M_{\tilde{\chi}^0_1}).$$

The error from $M_{\tilde{\chi}_1^0}$ largely dominates.

extrapolate.

• $ilde{ au}_2$: \sim no SUSY background

Results for $\tilde{\tau}_2$

$$M_{\tilde{\tau}_2} = 183^{+11}_{-5} \text{ GeV}/c^2 \oplus 18\Delta(M_{\tilde{\chi}_1^0}).$$

The error from the endpoint largely dominates.

 Fit line to (data-background fit).

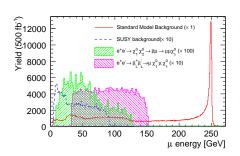
- Only the upper end-point is relevant.
- Background subtraction:
 - τ

 1: Substantial SUSY

Results from cross-section for $\tilde{\tau}_1$

$$\Delta(N_{signal})/N_{signal} = 3.1\% \rightarrow \Delta(M_{\tilde{\tau}_1}) = 3.2 \text{ GeV}/c^2$$

Results from cross-section for $\tilde{\tau}_2$

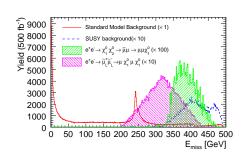

$$\Delta(N_{signal})/N_{signal} = 4.2\% \rightarrow \Delta(M_{\tilde{ au}_2}) = 3.6~{
m GeV}/c^2$$

End-point + Cross-section $\rightarrow \Delta(M_{\tilde{ au}_2}) = 1.7~{
m GeV}/c^2$

 Fit line to (data-background fit).

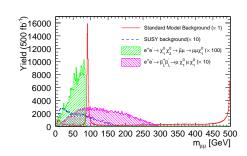
μ channels

Use "normal" polarisation (-0.8,0.22).


- $\bullet \ \tilde{\mu}_L \tilde{\mu}_L \to \mu \mu \tilde{\chi}^0_1 \tilde{\chi}^0_1$
- $\bullet \ \tilde{\chi}^0_1 \tilde{\chi}^0_2 \to \mu \tilde{\mu}_R \tilde{\chi}^0_1 \to \mu \mu \tilde{\chi}^0_1$
- Momentum of μ :s
- E_{miss}
- \bullet $M_{\mu\mu}$

μ channels

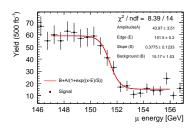
Use "normal" polarisation (-0.8,0.22).

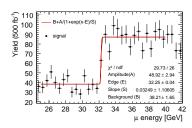

- $\bullet \ \tilde{\mu}_L \tilde{\mu}_L \to \mu \mu \tilde{\chi}^0_1 \tilde{\chi}^0_1$
- $\tilde{\chi}_1^0 \tilde{\chi}_2^0 \rightarrow \mu \tilde{\mu}_R \tilde{\chi}_1^0 \rightarrow \mu \mu \tilde{\chi}_1^0$
- Momentum of μ :s
- E_{miss}
- \bullet $M_{\mu\mu}$

μ channels

Use "normal" polarisation (-0.8,0.22).

- $\bullet \ \tilde{\mu}_L \tilde{\mu}_L \to \mu \mu \tilde{\chi}^0_1 \tilde{\chi}^0_1$
- $\tilde{\chi}_1^0 \tilde{\chi}_2^0 \rightarrow \mu \tilde{\mu}_R \tilde{\chi}_1^0 \rightarrow \mu \mu \tilde{\chi}_1^0$
- Momentum of μ :s
- E_{miss}
- \bullet $\mathsf{M}_{\mu\mu}$

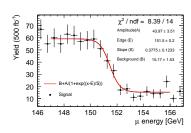


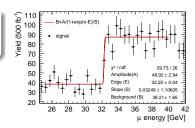

$\tilde{\mu}_{\rm L}\tilde{\mu}_{\rm L}$

Selections

- $\theta_{missing p} \in [0.1\pi, 0.9\pi]$
- $E_{miss} \in [200, 430] \text{GeV}$
- $M_{\mu\mu} \notin [80, 100] \text{GeV}$ and $> 30 \,{\rm GeV}/c^2$

Masses from edges. Beam-energy spread dominates error.


$\tilde{\mu}_{\mathrm{L}}\tilde{\mu}_{\mathrm{L}}$

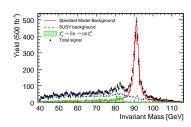

Selections

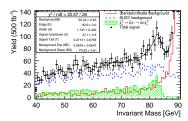
- $\theta_{missing p} \in [0.1\pi, 0.9\pi]$
- $E_{miss} \in [200, 430] \text{GeV}$
- $M_{\mu\mu} \notin [80, 100] \text{GeV}$ and $> 30 \,{\rm GeV}/c^2$

Masses from edges. Beam-energy spread dominates error.

$$\Delta(M_{\tilde{\chi}_1^0}) = 920 \mathrm{MeV}/c^2$$

 $\Delta(M_{\tilde{\mu}_\mathrm{L}}) = 100 \mathrm{MeV}/c^2$

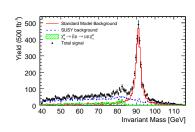


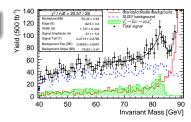


Selections

- $\theta_{missing p} \in [0.2\pi, 0.8\pi]$
- $p_{Tmiss} > 40 \text{GeV}/c$
- β of μ system > 0.6.
- $E_{miss} \in [355, 395] \text{GeV}/c^2$

Mass from fit to invariant mass edge.




Selections

- $\theta_{missing p} \in [0.2\pi, 0.8\pi]$
- $p_{Tmiss} > 40 \text{GeV}/c$
- β of μ system > 0.6.
- $E_{miss} \in [355, 395] \text{GeV}/c^2$

Mass from fit to invariant mass edge.

$$\Delta(M_{\tilde{\chi}^0_2}) = 1.38 \text{GeV}/c^2$$

The e channel

 $\sigma(\tilde{e}_R\tilde{e}_R)$ = 1.3 pb: Hundreds of thousands of almost background-free events expected.

Most of the reduction of the SM backround can be taken over from the $\tilde{\tau}$ analysis.

Some changes needed:

- E_{vis} < 170 GeV (rather than 120).
- $(E_{jet1} + E_{jet2}) \sin \theta_{acop} \in [21, 105] \text{ GeV}$. (rather than $\in [0, 30] \text{ GeV}$)
- $|\cos \theta_{missing\ momentum}| < 0.95$ (rather than 0.8).
- Both particles should be electron-like (rather than at most one).

The e channel

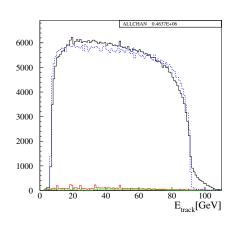
 $\sigma(\tilde{e}_R\tilde{e}_R)$ = 1.3 pb: Hundreds of thousands of almost background-free events expected.

Most of the reduction of the SM backround can be taken over from the $\tilde{\tau}$ analysis.

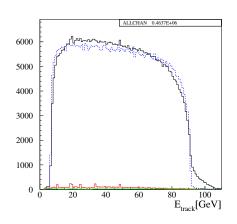
Some changes needed:

- E_{vis} < 170 GeV (rather than 120).
- $(E_{jet1} + E_{jet2}) \sin \theta_{acop} \in [21, 105] \text{ GeV}$. (rather than $\in [0, 30] \text{ GeV}$)
- $|\cos \theta_{missing\ momentum}| < 0.95$ (rather than 0.8).
- Both particles should be electron-like (rather than at most one).

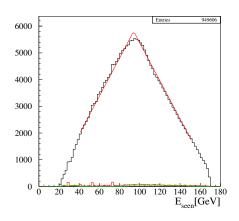
The e channel


 $\sigma(\tilde{e}_R\tilde{e}_R)$ = 1.3 pb: Hundreds of thousands of almost background-free events expected.

Most of the reduction of the SM backround can be taken over from the $\tilde{\tau}$ analysis.


Some changes needed:

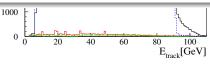
- E_{vis} < 170 GeV (rather than 120).
- $(E_{jet1} + E_{jet2}) \sin \theta_{acop} \in [21, 105] \text{ GeV}$. (rather than $\in [0, 30] \text{ GeV}$)
- $|\cos \theta_{missing\ momentum}| < 0.95$ (rather than 0.8).
- Both particles should be electron-like (rather than at most one).


- Signal: 227750 events (solid: fullsim, dashed: generator)
- Background: SUSY 1560 events, SM 2219 events.
- Efficiency: 67.8 %.
- Masses:
 - From average and RMS (true: 125.3 & 97.7): $M_{\tilde{e}_{\rm R}} = 126.5 \pm 0.5~{\rm GeV}/c^2~{\rm and}$ $M_{\tilde{\chi}_1^0} = 99.6 \pm 0.4~{\rm GeV}/c^2$
 - From $E_{vis} \in [40, 150] \text{ GeV}$: $M_{\tilde{e}_R} = 124.6 \pm 0.5 \text{ GeV}/c^2 \text{ and}$ $M_{\tilde{\chi}_1^0} = 98.3 \pm 0.4 \text{ GeV}/c^2$ (potentionally: $\pm 0.21 \text{ GeV}/c^2$ and $\pm 0.17 \text{ GeV}/c^2$)

- Signal: 227750 events (solid: fullsim, dashed: generator)
- Background: SUSY 1560 events, SM 2219 events.
- Efficiency: 67.8 %.
- Masses:
 - From average and RMS (true: 125.3 & 97.7): $M_{\tilde{e}_{\rm R}} = 126.5 \pm 0.5 \ {\rm GeV}/c^2 \ {\rm and}$ $M_{\tilde{\chi}_1^0} = 99.6 \pm 0.4 \ {\rm GeV}/c^2$
 - From $E_{vis} \in [40, 150]$ GeV: $M_{\tilde{e}_R} = 124.6 \pm 0.5 \text{ GeV}/c^2$ and $M_{\tilde{\chi}_1^0} = 98.3 \pm 0.4 \text{ GeV}/c^2$ (potentionally: $\pm 0.21 \text{ GeV}/c^2$ and

- Signal: 227750 events (solid: fullsim, dashed: generator)
- Background: SUSY 1560 events, SM 2219 events.
- Efficiency: 67.8 %.
- Masses:
 - From average and RMS (true: 125.3 & 97.7): $M_{\tilde{e}_{\rm R}} = 126.5 \pm 0.5 \, {\rm GeV}/c^2 \, {\rm and} \\ M_{\tilde{\chi}^0_1} = 99.6 \pm 0.4 \, {\rm GeV}/c^2$
 - From $E_{vis} \in [40, 150] \text{ GeV}$: $M_{\tilde{e}_R} = 124.6 \pm 0.5 \text{ GeV}/c^2 \text{ and}$ $M_{\tilde{\chi}_1^0} = 98.3 \pm 0.4 \text{ GeV}/c^2$ (potentionally: $\pm 0.21 \text{ GeV}/c^2 \text{ and}$ $\pm 0.17 \text{ GeV}/c^2$)

- Signal: 227750 events (solid: fullsim, dashed: generator)
- Background: SUSY 1560 events, SM 2219 events.
- Efficiency: 67.8 %.
- Masses:



Comming:

Integration over beam-spectrum and folding in detector-effects.

$$M_{\tilde{\chi}_1^0} = 99.6 \pm 0.4 \, \mathrm{GeV}/c^2$$
• From $E_{vis} \in [40, 150] \, \mathrm{GeV}$:
 $M_{\tilde{e}_{\mathrm{D}}} = 124.6 \pm 0.5 \, \mathrm{GeV}/c^2$ and

$$M_{\tilde{\chi}_1^0}=98.3\pm0.4~{\rm GeV}/c^2$$
 (potentionally: $\pm0.21~{\rm GeV}/c^2$ and

 $\pm 0.17 \, \text{GeV}/c^2$

- The current understanding of the LHC results was presented.
- A new ILC bench-mark point, TDR 1 was presented. It is ILC-wise almost identical to SPS1a'.
- Full simulation of $\tilde{\mathbf{e}}$, $\tilde{\mu}$ and $\tilde{\tau}$ production in SPS1a' in the ILD detector at ILC was presented
 - All background SUSY and SM included
 - Beam-background included
 - After 4 ILC years:

- The current understanding of the LHC results was presented.
- A new ILC bench-mark point, TDR 1 was presented. It is ILC-wise almost identical to SPS1a'.
- Full simulation of $\tilde{\mathbf{e}}$, $\tilde{\mu}$ and $\tilde{\tau}$ production in SPS1a' in the ILD detector at ILC was presented
 - All background SUSY and SM included
 - Beam-background included
 - After 4 ILC years:

- The current understanding of the LHC results was presented.
- A new ILC bench-mark point, TDR 1 was presented. It is ILC-wise almost identical to SPS1a'.
- Full simulation of $\tilde{\mathbf{e}}$, $\tilde{\mu}$ and $\tilde{\tau}$ production in SPS1a' in the ILD detector at ILC was presented
 - All background SUSY and SM included.
 - Beam-background included.
 - After 4 ILC years:
 - $\Delta(M_{\tilde{\tau}_1}) = 80 \text{ MeV}/c^2 \oplus 1.3\Delta(M_{\tilde{\chi}_1^0}).$ $\Delta(M_{\tilde{\tau}_2}) = 8 \text{ GeV}/c^2 \oplus 18\Delta(M_{\tilde{\chi}_1^0}).$
 - $\Delta(\mathcal{P}_{\tau}) \approx 6$ % (see backup).
 - For $e^+e^- \to \tilde{\mu}_L \tilde{\mu}_L$, we find: $\Delta(M_{\tilde{\chi}_1^0}) = 920 \text{MeV}/c^2$ $\Delta(M_{\tilde{e}_L}) = 100 \text{MeV}/c^2$.
 - For $\tilde{\chi}_{1}^{0}\tilde{\chi}_{2}^{0} \to \mu \tilde{\mu}_{R} \tilde{\chi}_{1}^{0} \to \mu \mu \tilde{\chi}_{1}^{0} \tilde{\chi}_{1}^{0}$, we find $\Delta(M_{\tilde{v}^{0}}) = 1.38 \text{GeV}/c^{2}$
 - $\Delta(M_{\tilde{\chi}_1^0}) = 400 \text{ MeV}/c^2 \text{ (prospect: } 170 \text{ MeV}/c^2 \text{)}$ $\Delta(M_{\tilde{c}_0}) = 500 \text{ MeV}/c^2 \text{ (prospect: } 210 \text{ MeV}/c^2 \text{)}$

- The current understanding of the LHC results was presented.
- A new ILC bench-mark point, TDR 1 was presented. It is ILC-wise almost identical to SPS1a'.
- Full simulation of $\tilde{\mathbf{e}}$, $\tilde{\mu}$ and $\tilde{\tau}$ production in SPS1a' in the ILD detector at ILC was presented
 - All background SUSY and SM included.
 - Beam-background included.
 - After 4 ILC years:

•
$$\Delta(M_{\tilde{\tau}_1}) = 80 \text{ MeV}/c^2 \oplus 1.3\Delta(M_{\tilde{\chi}_1^0}).$$

 $\Delta(M_{\tilde{\tau}_2}) = 8 \text{ GeV}/c^2 \oplus 18\Delta(M_{\tilde{\chi}_1^0}).$

- $\Delta(\mathcal{P}_{\tau}) \approx 6$ % (see backup).
- For $e^+e^- \rightarrow \tilde{\mu}_L\tilde{\mu}_L$, we find: $\Delta(M_{\tilde{\chi}_1^0}) = 920 \text{MeV}/c^2$ $\Delta(M_{\tilde{u}_1}) = 100 \text{MeV}/c^2$,
- For $\tilde{\chi}_1^0 \tilde{\chi}_2^0 \to \mu \tilde{\mu}_R \tilde{\chi}_1^0 \to \mu \mu \tilde{\chi}_1^0 \tilde{\chi}_1^0$, we find $\Delta(M_{\tilde{\chi}_2^0}) = 1.38 \text{GeV}/c^2$
- $\Delta(M_{\tilde{\chi}_1^0}) = 400 \text{ MeV}/c^2 \text{ (prospect: } 170 \text{ MeV}/c^2 \text{)}$ $\Delta(M_{\tilde{e}_0}) = 500 \text{ MeV}/c^2 \text{ (prospect: } 210 \text{ MeV}/c^2 \text{)}$

- The current understanding of the LHC results was presented.
- A new ILC bench-mark point, TDR 1 was presented. It is ILC-wise almost identical to SPS1a'.
- Full simulation of $\tilde{\mathbf{e}}$, $\tilde{\mu}$ and $\tilde{\tau}$ production in SPS1a' in the ILD detector at ILC was presented
 - All background SUSY and SM included.
 - Beam-background included.
 - After 4 ILC years:

•
$$\Delta(M_{\tilde{\tau}_1}) = 80 \text{ MeV}/c^2 \oplus 1.3\Delta(M_{\tilde{\chi}_1^0}).$$

 $\Delta(M_{\tilde{\tau}_2}) = 8 \text{ GeV}/c^2 \oplus 18\Delta(M_{\tilde{\chi}_1^0}).$

- $\Delta(\mathcal{P}_{\tau}) \approx 6$ % (see backup).
- For $e^+e^- \rightarrow \tilde{\mu}_L\tilde{\mu}_L$, we find: $\Delta(M_{\tilde{\chi}_1^0}) = 920 \text{MeV}/c^2$ $\Delta(M_{\tilde{u}_1}) = 100 \text{MeV}/c^2$,
- For $\tilde{\chi}_1^0 \tilde{\chi}_2^0 \to \mu \tilde{\mu}_R \tilde{\chi}_1^0 \to \mu \mu \tilde{\chi}_1^0 \tilde{\chi}_1^0$, we find $\Delta(M_{\tilde{\chi}_2^0}) = 1.38 \text{GeV}/c^2$
- $\Delta(M_{\tilde{\chi}_1^0}) = 400 \text{ MeV}/c^2$ (prospect: 170 MeV/ c^2) $\Delta(M_{\tilde{e}_0}) = 500 \text{ MeV}/c^2$ (prospect: 210 MeV/ c^2)

Outlook

At SPS1a' (TDR 1) there are

- 10 (11) masses
- Cross-sections for 13 (18) channels
- >100 branching ratios
- Several mixing angles

to measure at a 500 GeV ILC.

We intend to study TDR points

- At different E_{CMS}
- With different beam-polarisations
- At different theory-points
- Main tool: Fast simulation tuned to full-simulation

We are also studying other (cosmo-inspired) "LHC nightmare points"

- All sfermions at > 10 TeV.
- Only $\tilde{\chi}_1^0$, $\tilde{\chi}_2^0$, $\tilde{\chi}_4^{\pm}$ light, and quasi-degenerate

Outlook

At SPS1a' (TDR 1) there are

- 10 (11) masses
- Cross-sections for 13 (18) channels
- >100 branching ratios
- Several mixing angles

to measure at a 500 GeV ILC. We intend to study TDR points

- At different E_{CMS}
- With different beam-polarisations
- At different theory-points
- Main tool: Fast simulation tuned to full-simulation

We are also studying other (cosmo-inspired) "LHC nightmare points"

- All sfermions at > 10 TeV.
- Only $\tilde{\chi}_1^0$, $\tilde{\chi}_2^0$, $\tilde{\chi}_1^{\pm}$ light, and quasi-degenerate

Outlook

At SPS1a' (TDR 1) there are

- 10 (11) masses
- Cross-sections for 13 (18) channels
- >100 branching ratios
- Several mixing angles

to measure at a 500 GeV ILC. We intend to study TDR points

- At different E_{CMS}
- With different beam-polarisations
- At different theory-points
- Main tool: Fast simulation tuned to full-simulation

We are also studying other (cosmo-inspired) "LHC nightmare points":

All stermions at > 10 TeV.

Outlook

At SPS1a' (TDR 1) there are

- 10 (11) masses
- Cross-sections for 13 (18) channels
- >100 branching ratios
- Several mixing angles

to measure at a 500 GeV ILC.

We intend to study TDR points

- At different E_{CMS}
- With different beam-polarisations
- At different theory-points
- Main tool: Fast simulation tuned to full-simulation

We are also studying other (cosmo-inspired) "LHC nightmare points":

- All sfermions at > 10 TeV.
- Only $ilde{\chi}^0_1,\, ilde{\chi}^0_2,\, ilde{\chi}^\pm_1$ light, and quasi-degenerate

Outlook

At SPS1a' (TDR 1) there are

- 10 (11) masses
- Cross-sections for 13 (18) channels
- >100 branching ratios
- Several mixing angles

to measure at a 500 GeV ILC.

We intend to study TDR points

- At different E_{CMS}
- With different beam-polarisations
- At different theory-points
- Main tool: Fast simulation tuned to full-simulation

We are also studying other (cosmo-inspired) "LHC nightmare points":

- All sfermions at > 10 TeV.
- Only $\tilde{\chi}_1^0$, $\tilde{\chi}_2^0$, $\tilde{\chi}_1^{\pm}$ light, and quasi-degenerate

Outlook

At SPS1a' (TDR 1) there are

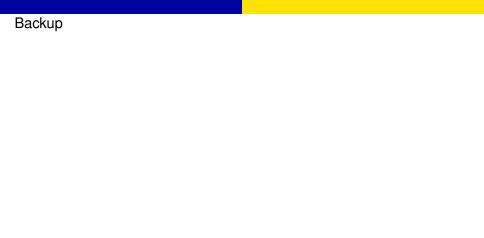
- 10 (11) masses
- Cross-sections for 13 (18) channels
- >100 branching ratios

People involved:

N. d'Ascenzo, J. List, S. Caiazza, K. Rolbiecki, H. Sert, M.B.

אים ווונפווע נט פנעעץ דערו דערוונים איז

Thanks to:

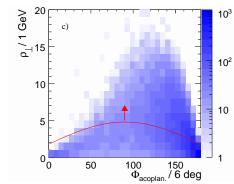

P. Schade, P. Bechtle, R. Wilkinson, G. Moortgat-Pick, G. Weiglein, H. Baer, S. Heinemeyer, W. Buchmüller

Main tool: Fast simulation tuned to full-simulation

We are also studying other (cosmo-inspired) "LHC nightmare points":

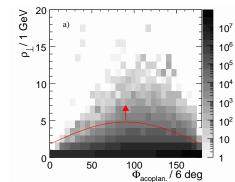
- All sfermions at > 10 TeV.
- Only $\tilde{\chi}_1^0$, $\tilde{\chi}_2^0$, $\tilde{\chi}_1^{\pm}$ light, and quasi-degenerate

THANK YOU!

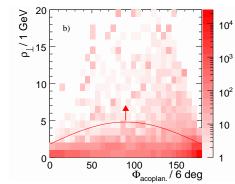

BACKUP SLIDES

$\Delta(M) = 10.2 \text{ GeV}/c^2 \rightarrow \gamma \gamma \text{ background } ...$

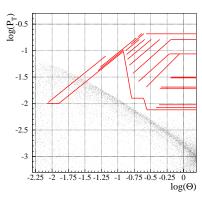
- Correlated cut in ρ and θ_{acop} : $\rho > 2.7 \sin \theta_{acop} + 1.8$. ($\rho = P_{7}$ of jets wrt. thrust axis, in x-y projection.)
- no significant activity in the BeamCal
- $\phi_{p \ miss}$ not in the direction of the incoming beam-pipe.


$$\Delta(\textit{M}) = 10.2~{
m GeV}/\emph{c}^2 \rightarrow \gamma \gamma$$
 background ...

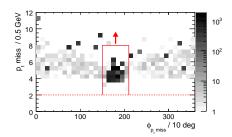
- Correlated cut in ρ and θ_{acop} : $\rho > 2.7 \sin \theta_{acop} + 1.8$. ($\rho = P_T$ of jets wrt. thrust axis, in x-y projection.)
- no significant activity in the BeamCal
- $\phi_{p \ miss}$ not in the direction of the incoming beam-pipe.


$$\Delta(\textit{M}) = 10.2~{
m GeV}/\emph{c}^2 \rightarrow \gamma \gamma$$
 background ...

- Correlated cut in ρ and θ_{acop} : $\rho > 2.7 \sin \theta_{acop} + 1.8$. ($\rho = P_T$ of jets wrt. thrust axis, in x-y projection.)
- no significant activity in the BeamCal
- φ_{p miss} not in the direction of the incoming beam-pipe.


$$\Delta(\textit{M}) = 10.2 \; \mathrm{GeV}/\textit{c}^2 \rightarrow \gamma \gamma \; \mathrm{background} \; ...$$

- Correlated cut in ρ and θ_{acop} : $\rho > 2.7 \sin \theta_{acop} + 1.8$. ($\rho = P_T$ of jets wrt. thrust axis, in x-y projection.)
- no significant activity in the BeamCal
- $\phi_{p \ miss}$ not in the direction of the incoming beam-pipe.

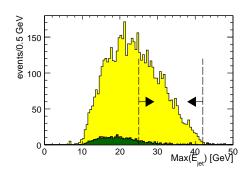

 $\Delta(\textit{M}) = 10.2 \; \mathrm{GeV}/\emph{c}^2 \rightarrow \gamma \gamma \; \mathrm{background} \; ...$

- Correlated cut in ρ and θ_{acop} : $\rho > 2.7 \sin \theta_{acop} + 1.8$. ($\rho = P_T$ of jets wrt. thrust axis, in x-y projection.)
- no significant activity in the BeamCal
- $\phi_{p \ miss}$ not in the direction of the incoming beam-pipe.

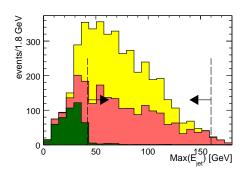
$$\Delta(\textit{M}) = 10.2~{
m GeV}/\emph{c}^2
ightarrow \gamma \gamma$$
 background ...

- Correlated cut in ρ and θ_{acop} : $\rho > 2.7 \sin \theta_{acop} + 1.8$. ($\rho = P_T$ of jets wrt. thrust axis, in x-y projection.)
- no significant activity in the BeamCal
- $\phi_{p \ miss}$ not in the direction of the incoming beam-pipe.

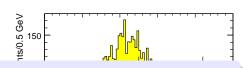
End-point and cross-section


Additional cuts against $\gamma\gamma$ (not needed for polarisation, due to PID requirements):

- $|\cos \theta_{missing\ momentum}| < 0.8$
- Low fraction of "Rest-of-Event" energy at low angles.


From now on: Different cuts for $\tilde{\tau}_1$ ($\gamma\gamma$ background), and $\tilde{\tau}_2$ (*WW* background).

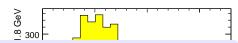
- Poorly known SUSY background is most important contribution to uncertainty.
- Select region where is is as low as possible.


- Poorly known SUSY background is most important contribution to uncertainty.
- Select region where is is as low as possible.

- Poorly known SUSY background is most important contribution to uncertainty.
- Select region where is is as low as possible.

- Poorly known SUSY background is most important contribution to uncertainty.
- Select region where is is as low as possible.

Results for $\tilde{\tau}_1$


$$\Delta(N_{signal})/N_{signal} = 3.1\%$$

$$\Delta(M_{\tilde{\tau}_1})/M_{\tilde{\tau}_1} = (\Delta(\sigma)/\sigma)(\beta^2)/3(1-\beta^2) = 2.1$$
 %, ie.

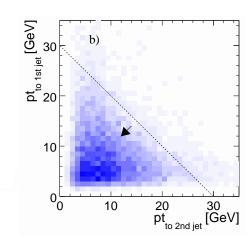
$$\Delta(M_{\tilde{\tau}_*}) = 3.2 \,\mathrm{GeV}/c^2$$

- Poorly known SUSY background is most important contribution to uncertainty.
- Select region where is is as

Results for $\tilde{\tau}_2$

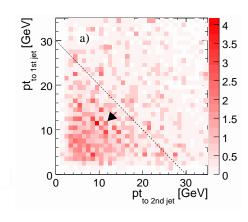
$$\Delta(N_{signal})/N_{signal} = 4.2\%$$

$$\Delta(M_{\tilde{\tau}_2})/M_{\tilde{\tau}_2} = (\Delta(\sigma)/\sigma)(\beta^2)/3(1-\beta^2) = 2.4$$
 %, ie.

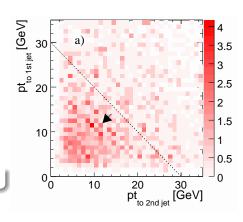

$$\Delta(M_{\tilde{\tau}_2}) = 3.6 \text{ GeV}/c^2$$

End-point + Cros-section
$$ightarrow \Delta(\textit{M}_{\widetilde{\chi}^0_1}) = 1.7~{
m GeV}/\textit{c}^2$$

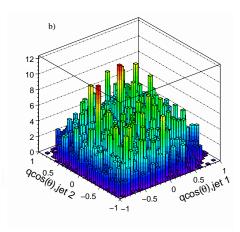
ıvıax(∟_{iet}) [Gev]


- E_{vis} < 120 GeV,
- $|\cos \theta_{jet}| < 0.9$ for both jets,
- $\theta_{acop} > 85^{\circ}$,
- $(E_{jet1} + E_{jet2}) \sin \theta_{acop} < 30 \text{ GeV}.$
- $M_{vis} > 20 \text{ GeV}/c^2$.

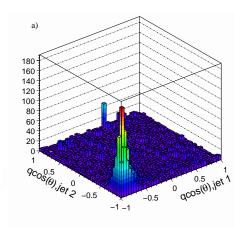
Efficiency 14.9 %

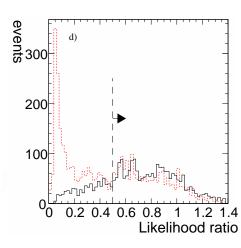

- E_{vis} < 120 GeV,
- $|\cos \theta_{iet}|$ < 0.9 for both jets,
- $\theta_{acop} > 85^{\circ}$,
- $(E_{jet1} + E_{jet2}) \sin \theta_{acop} < 30 \text{ GeV}.$
- $M_{vis} > 20 \text{ GeV}/c^2$.

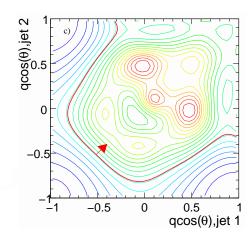
Efficiency 14.9 %

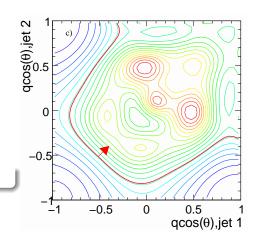


- E_{vis} < 120 GeV,
- $|\cos \theta_{jet}| < 0.9$ for both jets,
- $\theta_{acop} > 85^{\circ}$,
- $(E_{jet1} + E_{jet2}) \sin \theta_{acop} < 30 \text{ GeV}.$
- $M_{vis} > 20 \text{ GeV}/c^2$.


Efficiency 14.9 %


- $E_{vis} > 50 \text{ GeV}$.
- $\theta_{acop} < 155^{\circ}$.
- Other side jet not e or μ
- ullet Most energetic jet not ${\it e}$ or μ
- Cut on Signal-SM LR of f(q_{jet1} cosθ_{jet1},q_{jet2}cosθ_{jet2})


- $E_{vis} > 50 \text{ GeV}$.
- $\theta_{acop} < 155^{\circ}$.
- Other side jet not e or μ
- Most energetic jet not e or μ
- Cut on Signal-SM LR of f(q_{jet1} cosθ_{jet1},q_{jet2}cosθ_{jet2})


- $E_{vis} > 50 \text{ GeV}$.
- $\theta_{acop} < 155^{\circ}$.
- Other side jet not e or μ
- Most energetic jet not e or μ
- Cut on Signal-SM LR of f(q_{jet1} cosθ_{jet1}, q_{jet2}cosθ_{jet2})

- $E_{vis} > 50 \text{ GeV}$.
- $\theta_{acop} < 155^{\circ}$.
- Other side jet not e or μ
- Most energetic jet not e or μ
- Cut on Signal-SM LR of f(q_{jet1} cosθ_{jet1}, q_{jet2}cosθ_{jet2})

- $E_{vis} > 50 \text{ GeV}$.
- $\theta_{acop} < 155^{\circ}$.
- Other side jet not e or μ
- Most energetic jet not e or μ
- Cut on Signal-SM LR of f(q_{jet1} cosθ_{jet1},q_{jet2}cosθ_{jet2})

au Polarisation: formulae and corrections

Spectrum of π :s in $au o \pi^{+-}
u_{ au}$:

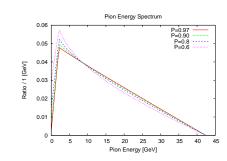
$$\frac{1}{\sigma} \frac{d\sigma}{dy_{\pi}} \sim \begin{cases} (1 - P_{\tau}) \log \frac{P_{\widetilde{\tau}, \max}}{P_{\widetilde{\tau}, \min}} + 2P_{\tau} y_{\pi} (\frac{1}{P_{\widetilde{\tau}, \min}} - \frac{1}{P_{\widetilde{\tau}, \max}}) & \text{for } y_{\pi} < P_{\widetilde{\tau}, \min} \\ (1 - P_{\tau}) \log \frac{P_{\widetilde{\tau}, \max}}{y_{\pi}} + 2P_{\tau} (1 - \frac{y_{\pi}}{P_{\widetilde{\tau}, \max}}) & \text{for } Y_{\pi} > P_{\widetilde{\tau}, \min} \end{cases}$$

Analysers:

- π -channel: P_{π}
- ρ -channel: $E_{\pi}/(E_{\pi}+E_{\gamma:s})$

Note the importance of the region with $Y_{\pi} < P_{\widetilde{\tau}, \textit{min}}!$

au Polarisation: formulae and corrections

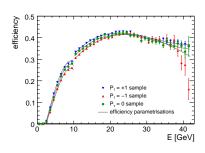

Spectrum of π :s in $\tau \to \pi^{+-}\nu_{\tau}$:

$$\frac{1}{\sigma}\frac{d\sigma}{dy_{\pi}} \sim \begin{cases} (1-P_{\tau})\log\frac{P_{\widetilde{\mathcal{T}},\max}}{P_{\widetilde{\mathcal{T}},\min}} + 2P_{\tau}y_{\pi}(\frac{1}{P_{\widetilde{\mathcal{T}},\min}} - \frac{1}{P_{\widetilde{\mathcal{T}},\max}}) & \text{for } y_{\pi} < P_{\widetilde{\mathcal{T}},\min} \\ (1-P_{\tau})\log\frac{P_{\widetilde{\mathcal{T}},\max}}{y_{\pi}} + 2P_{\tau}(1-\frac{y_{\pi}}{P_{\widetilde{\mathcal{T}},\max}}) & \text{for } Y_{\pi} > P_{\widetilde{\mathcal{T}},\min} \end{cases}$$

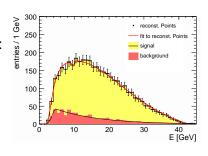
Analysers:

- π -channel: P_{π}
- ρ -channel: $E_{\pi}/(E_{\pi}+E_{\gamma:s})$

Note the importance of the region with $Y_{\pi} < P_{\widetilde{\tau} \ min}!$

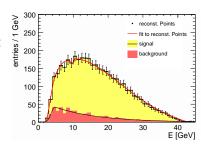


- Fit background MC.
- Subtract this background estimate.
- Calculate efficiency correction:
- Fit \mathcal{P}_{τ} , with normalisation from cross-section determination.
- Repeat fit with randomly modified background.
- Determine effect from $\Delta(M_{\tilde{\chi}_1^0})$ and $\Delta(M_{\tilde{\tau}_1})$ numerically.


- Fit background MC.
- Subtract this background estimate.
- Calculate efficiency correction:
- Fit \mathcal{P}_{τ} , with normalisation from cross-section determination.
- Repeat fit with randomly modified background.
- Determine effect from $\Delta(M_{\tilde{\chi}_1^0})$ and $\Delta(M_{\tilde{\tau}_1})$ numerically.

- Fit background MC.
- Subtract this background estimate.
- Calculate efficiency correction:
- Fit \mathcal{P}_{τ} , with normalisation from cross-section determination.
- Repeat fit with randomly modified background.
- Determine effect from $\Delta(M_{\tilde{\chi}_1^0})$ and $\Delta(M_{\tilde{\tau}_1})$ numerically.

- Fit background MC.
- Subtract this background estimate.
- Calculate efficiency correction:
- Fit \mathcal{P}_{τ} , with normalisation from cross-section determination.
- Repeat fit with randomly modified background.
- Determine effect from Δ(M_{χ̃1}⁰) and Δ(M_{τ̃1}) numerically.

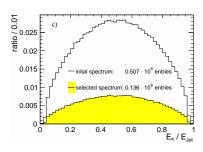

- Fit background MC.
- Subtract this background estimate.
- Calculate efficiency correction:
- Fit \mathcal{P}_{τ} , with normalisation from cross-section determination.
- Repeat fit with randomly modified background.
- Determine effect from $\Delta(M_{\tilde{\chi}_1^0})$ and $\Delta(M_{\tilde{\tau}_1})$ numerically.

- Fit background MC.
- Subtract this background estimate.
- Calculate efficiency correction:
- Fit \mathcal{P}_{τ} , with normalisation from cross-section determination.
- Repeat fit with randomly modified background.
- Determine effect from $\Delta(M_{\tilde{\chi}_1^0})$ and $\Delta(M_{\tilde{\chi}_1})$ numerically.

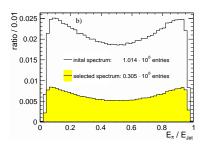
- Fit background MC.
- Subtract this background estimate.
- Calculate efficiency correction:
- Fit \mathcal{P}_{τ} , with normalisation from cross-section determination.
- Repeat fit with randomly modified background.
- Determine effect from $\Delta(M_{\tilde{\chi}_1^0})$ and $\Delta(M_{\tilde{\tau}_1})$ numerically.

$$\mathcal{P}_{ au} = 93 \pm 6 \pm 5 (ext{bkg}) \pm 3 (ext{SUSY masses})\%$$

- Fit background MC.
- Subtract this background estimate.
- Calculate efficiency corrected model prediction. (NB: R is not sensitive to beam spectrum)
- Fit for \mathcal{P}_{τ} for 0.1 < R < 0.85

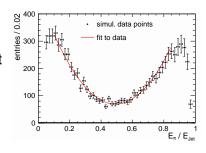

$$P_{\tau} = 86.0 \pm 5\%$$

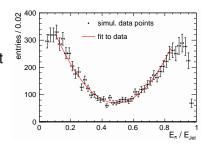
- Fit background MC.
- Subtract this background estimate.
- Calculate efficiency corrected model prediction. (NB: R is not sensitive to beam spectrum)
- Fit for \mathcal{P}_{τ} for 0.1 < R < 0.85


$$P_{\tau} = 86.0 \pm 5\%$$

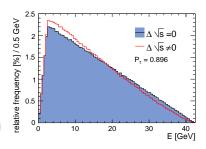
- Fit background MC.
- Subtract this background estimate.
- Calculate efficiency corrected model prediction. (NB: R is not sensitive to beam spectrum)
- Fit for \mathcal{P}_{τ} for 0.1 < R < 0.85

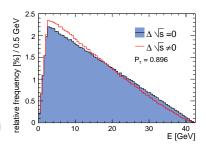
- Fit background MC.
- Subtract this background estimate.
- Calculate efficiency corrected model prediction. (NB: R is not sensitive to beam spectrum)
- Fit for \mathcal{P}_{τ} for 0.1 < R < 0.85


- Fit background MC.
- Subtract this background estimate.
- Calculate efficiency corrected model prediction. (NB: R is not sensitive to beam spectrum)
- Fit for \mathcal{P}_{τ} for 0.1 < R < 0.85

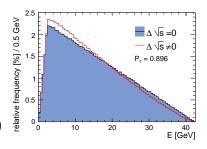

- Fit background MC.
- Subtract this background estimate.
- Calculate efficiency corrected model prediction. (NB: R is not sensitive to beam spectrum)
- Fit for \mathcal{P}_{τ} for 0.1 < R < 0.85

- Fit background MC.
- Subtract this background estimate.
- Calculate efficiency corrected model prediction. (NB: R is not sensitive to beam spectrum)
- Fit for \mathcal{P}_{τ} for 0.1 < R < 0.85


- Fit background MC.
- Subtract this background estimate.
- Calculate efficiency corrected model prediction. (NB: R is not sensitive to beam spectrum)
- Fit for \mathcal{P}_{τ} for 0.1 < R < 0.85

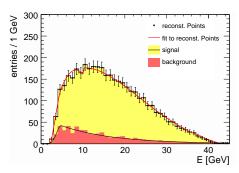

$$\mathcal{P}_{ au}=86.0\pm5\%$$

- Plot spectrum (at generator level), with and without beam-strahlung and ISR shows difference.
- Parametrise actual spectrum for $\mathcal{P}_{\tau} = \pm 1 \; (= F(E, \pm 1))$
- True spectrum will be $F(E, \mathcal{P}_{\tau}) = \frac{1+\mathcal{P}_{\tau}}{2}F(E, +1) + \frac{1-\mathcal{P}_{\tau}}{2}F(E, -1)$


- Plot spectrum (at generator level), with and without beam-strahlung and ISR shows difference.
- Parametrise actual spectrum for $\mathcal{P}_{\tau} = \pm 1 \; (= F(E, \pm 1))$
- True spectrum will be $F(E,\mathcal{P}_{\tau}) = \frac{1+\mathcal{P}_{\tau}}{2}F(E,+1) + \frac{1-\mathcal{P}_{\tau}}{2}F(E,-1)$

- Plot spectrum (at generator level), with and without beam-strahlung and ISR shows difference.
- Parametrise actual spectrum for $\mathcal{P}_{\tau} = \pm 1 \ (= F(E, \pm 1))$
- True spectrum will be $F(E,\mathcal{P}_{\tau}) = \frac{1+\mathcal{P}_{\tau}}{2}F(E,+1) + \frac{1-\mathcal{P}_{\tau}}{2}F(E,-1)$

- Plot spectrum (at generator level), with and without beam-strahlung and ISR shows difference.
- Parametrise actual spectrum for $\mathcal{P}_{\tau} = \pm 1 \; (= F(E, \pm 1))$
- True spectrum will be $F(E, \mathcal{P}_{\tau}) = rac{1+\mathcal{P}_{\tau}}{2}F(E, +1) + rac{1-\mathcal{P}_{\tau}}{2}F(E, -1)$



Extract the $\tau \to \pi^{+-}\nu_{\tau}$ signal.

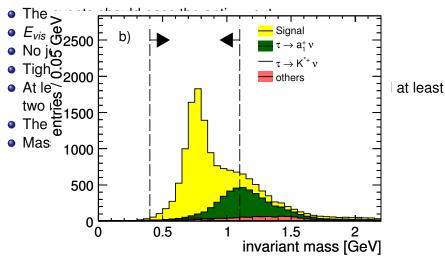
- The events should pass the anti- $\gamma\gamma$ cut.
- E_{vis} < 90 GeV.
- No jet with E > 60 GeV
- At least one jets should contain a single particle.
- The single particle should have a π -id (both calorimetric and dE/dx).

Extract the $\tau \to \pi^{+-}\nu_{\tau}$ signal.

- The events should pass the anti- $\gamma\gamma$ cut.
- E_{vis} < 90 GeV.
- No jet with E > 60 GeV
- At least one jets should contain a single particle.
- The single particle should have a π -id (both calorimetric and dE/dx).

Extract the $au o ho^{+-} u_{ au}$ signal.

- The events should pass the anti- $\gamma\gamma$ cut.
- $E_{vis} < 90 \text{ GeV}$.
- No jet with *E* > 43 GeV
- Tighter ρ cut: $\rho > 3.5 \sin \theta_{acop} + 2$.
- At least one jets should contain one charged particle, and at least two neutrals.
- The single particle should have a π -id (dE/dx only).
- Mass of this jet close to M_{ρ} : $M_{jet} \in [0.4, 1.1] \text{GeV}/c^2$.

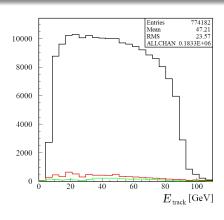

Extract the $au o
ho^{+-}
u_{ au}$ signal.

- The events should pass the anti- $\gamma\gamma$ cut.
- E_{vis} < 90 GeV.
- No jet with *E* > 43 GeV
- Tighter ρ cut: $\rho > 3.5 \sin \theta_{acop} + 2$.
- At least one jets should contain one charged particle, and at least two neutrals.
- The single particle should have a π -id (dE/dx only).
- Mass of this jet close to M_{ρ} : $M_{jet} \in [0.4, 1.1] \text{GeV}/c^2$.

Extract the $\tau \to \rho^{+-}\nu_{\tau}$ signal.

- The events should pass the anti- $\gamma\gamma$ cut.
- E_{vis} < 90 GeV.
- No jet with E > 43 GeV
- Tighter ρ cut: $\rho > 3.5 \sin \theta_{acop} + 2$.
- At least one jets should contain one charged particle, and at least two neutrals.
- The single particle should have a π -id (dE/dx only).
- Mass of this jet close to M_{ρ} : $M_{jet} \in [0.4, 1.1] \text{GeV}/c^2$.

Extract the $\tau \to \rho^{+-}\nu_{\tau}$ signal.


Background and efficiency from Full-sim SPS1a' sample, kinematics from Whizard simulation of the model.

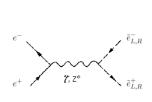
Background and efficiency from Full-sim SPS1a' sample, kinematics from Whizard simulation of the model.

- The ẽ signal was extracted from the same sample as was used for the SPS1a' τ̃study, using the same cuts except
 - Demand exactly two well identified electrons.
 - Reverse the τ̃anti-SUSY background cut
 - Some cuts could be loosened
- Almost background-free!

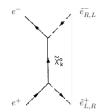
Background and efficiency from Full-sim SPS1a' sample, kinematics from Whizard simulation of the model.

- The ẽ signal was extracted from the same sample as was used for the SPS1a' τ̃study, using the same cuts except
 - Demand exactly two well identified electrons.
 - Reverse the τ̃anti-SUSY background cut
 - Some cuts could be loosened
- Almost background-free!

Background and efficiency from Full-sim SPS1a' sample, kinematics from Whizard simulation of the model.


For the signal:

- Generate (with Whizard 1.95) the modified model.
- Apply the kinematic cuts used for the full simulation analysis.
- Scale down the over-all event-weight so that the efficiency agrees with the full simulation.


(Preliminary work by M.B., G. Moortgat-Pick)

SUSY associates scalars to chiral (anti)fermions

$$e_{L,R}^- \leftrightarrow \tilde{e}_{L,R}^- \quad \text{and} \quad e_{L,R}^+ \leftrightarrow \tilde{e}_{R,L}^+. \tag{1}$$

es with same chirality

Chirality for \tilde{e}^{\pm} same as e^{\pm}

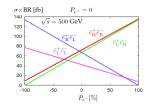
What if $M_{\tilde{e}_L} \approx M_{\tilde{e}_R}$, so that thresholds can't separate $e^+e^- \to \tilde{e}_L \tilde{e}_L$, $\tilde{e}_R \tilde{e}_R$ and $\tilde{e}_R \tilde{e}_L$?

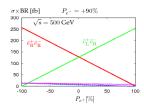
Model: SPS1a' like, but:

 $M_{\rm \widetilde{e}_L}$ = 200 GeV and $M_{\rm \widetilde{e}_R}$ = 195 GeV. Both decay 100 % to $\tilde{\chi}_1^0$ e.

Background and efficiency from Full-sim SPS1a' sample, kinematics from Whizard simulation of the model.

Even with $P_{e^-} \ge +90\%$: No separation of $\tilde{e}_L^+ \tilde{e}_R^-$ and $\tilde{e}_R^+ \tilde{e}_R^-$: Ratio of the cross sections \approx constant.


Near Degenerate e and polarisation


Model: SPS1a' like, but:

 $M_{\rm \widetilde{e}_L}$ = 200 GeV and $M_{\rm \widetilde{e}_R}$ = 195 GeV. Both decay 100 % to $\tilde{\chi}_1^0$ e.

Background and efficiency from Full-sim SPS1a' sample, kinematics from Whizard simulation of the model.

Even with $P_{e^-} \ge +90\%$: No separation of $\tilde{e}_L^+ \tilde{e}_R^-$ and $\tilde{e}_R^+ \tilde{e}_R^-$: Ratio of the cross sections \approx constant.

The handle:

Opposite polarisation beams produces \tilde{e} :s in both s- and t-channel. Same polarisation produces \tilde{e} :s in t-channel only \Rightarrow

Modification of Θ distribution with changed positron polarisation

However, the effect is small since t-channel always dominates \tilde{e} :s are heavy (and are scalars) \Rightarrow t- and s- channel kinematic distributions of the electrons are not very different.

Near Degenerate e and polarisation

The handle:

Opposite polarisation beams produces \tilde{e} :s in both s- and t-channel. Same polarisation produces \tilde{e} :s in t-channel only \Rightarrow

Modification of ⊖ distribution with changed positron polarisation

However, the effect is small since t-channel always dominates ! \tilde{e} :s are heavy (and are scalars) \Rightarrow t- and s- channel kinematic distributions of the electrons are not very different.

The handle: Opposite polarisation beams produces ẽ:s in both s- and t-channel.

Same polarisation produces \tilde{e} :s in t-channel only \Rightarrow

Modification of Θ distribution with changed positron polarisatior

Analyse assuming 100 fb⁻¹ for each of the polarisations configurations.

Reconstruct $\Theta_{\widetilde{\mathbf{e}}}$ event-by-event assuming $M_{\widetilde{\mathbf{e}}}$ and $M_{\widetilde{\chi}_1^0}$ known.

- \bullet P(e⁻)= +80 % and ...
- P(e⁺) = ± 22 % ...
- $P(e^+) = \pm 30 \% ...$
- $P(e^+) = \pm 60 \% ...$
- ... and for $P(e^{-}) = \pm 80 \%$ $P(e^{+}) = 0$

The handle: Opposite polarisation beams produces $\tilde{\epsilon}$:s in both s- and t-channel.

Same polarisation produces \tilde{e} :s in t-channel only \Rightarrow

Modification of Θ distribution with changed positron polarisatior

Analyse assuming 100 fb⁻¹ for each of the polarisations configurations.

Reconstruct $\Theta_{\widetilde{\mathbf{e}}}$ event-by-event assuming $M_{\widetilde{\mathbf{e}}}$ and $M_{\widetilde{\chi}_1^0}$ known.

```
 P(e^-) = +80 \%  and ...
```

$$P(e^+) = \pm 22 \% \dots$$

$$P(e^+) = \pm 30 \% \dots$$

$$P(e^+) = \pm 60 \% \dots$$

• ... and for
$$P(e^{-}) = \pm 80 \%$$

 $P(e^{+}) = 0$

The handle: Opposite polarisation beams produces \tilde{e} :s in both s- and t-channel.

Same polarisation produces \tilde{e} :s in t-channel only \Rightarrow

Modification of Θ distribution with changed positron polarisation

Analyse assuming 100 fb⁻¹ for each of the polarisations configurations.

Reconstruct $\Theta_{\widetilde{\mathbf{e}}}$ event-by-event assuming $M_{\widetilde{\mathbf{e}}}$ and $M_{\widetilde{\chi}_1^0}$ known.

```
    P(e<sup>-</sup>)= +80 % and
```

$$P(e^+) = \pm 22 \% \dots$$

$$P(e^+) = \pm 30 \% \dots$$

$$P(e^+) = \pm 60 \% ...$$

• ... and for $P(e^{-}) = \pm 80 \%$

Near Degenerate e and polarisation

The handle: Opposite polarisation beams produces \tilde{e} :s in both s- and t-channel.

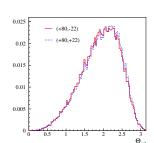
Same polarisation produces \tilde{e} :s in t-channel only \Rightarrow

Modification of Θ distribution with changed positron polarisation

Analyse assuming 100 fb⁻¹ for each of the polarisations configurations.

Reconstruct $\Theta_{\widetilde{\mathbf{e}}}$ event-by-event assuming $M_{\widetilde{\mathbf{e}}}$ and $M_{\widetilde{\chi}_1^0}$ known.

- P(e⁻)= +80 % and ..
- $P(e^+) = \pm 22 \% \dots$
- $P(e^+) = \pm 30 \% ...$
- $P(e^+) = \pm 60 \% ...$
- ... and for $P(e^{-})=\pm 80 \%$ $P(e^{+})=0$

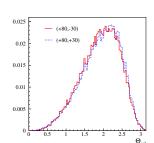

The handle: Opposite polarisation beams produces \tilde{e} :s in both s- and t-channel.

Same polarisation produces \tilde{e} :s in t-channel only \Rightarrow

Modification of Θ distribution with changed positron polarisation

Analyse assuming 100 fb⁻¹ for each of the polarisations configurations.

- P(e⁻)= +80 % and ..
- $P(e^+) = \pm 22 \% ...$
- $P(e^+) = \pm 30 \% \dots$
- $P(e^+) = \pm 60 \% ...$
- ... and for $P(e^{-})=\pm 80 \%$ $P(e^{+})=0$

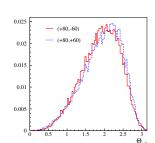

The handle: Opposite polarisation beams produces \tilde{e} :s in both s- and t-channel.

Same polarisation produces \tilde{e} :s in t-channel only \Rightarrow

Modification of Θ distribution with changed positron polarisation

Analyse assuming 100 fb⁻¹ for each of the polarisations configurations.

- P(e⁻)= +80 % and ..
- $P(e^+) = \pm 22 \% ...$
- $P(e^+) = \pm 30 \% ...$
- $P(e^+) = \pm 60 \% ...$
- ... and for $P(e^{-})=\pm 80 \%$ $P(e^{+})=0$

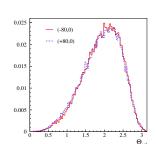

The handle: Opposite polarisation beams produces \tilde{e} :s in both s- and t-channel.

Same polarisation produces \tilde{e} :s in t-channel only \Rightarrow

Modification of Θ distribution with changed positron polarisation

Analyse assuming 100 fb⁻¹ for each of the polarisations configurations.

- P(e⁻)= +80 % and ..
- $P(e^+) = \pm 22 \% ...$
- $P(e^+) = \pm 30 \% ...$
- $P(e^+) = \pm 60 \% ...$
- ... and for $P(e^{-})=\pm 80 \%$ $P(e^{+})=0$


The handle: Opposite polarisation beams produces \tilde{e} :s in both s- and t-channel.

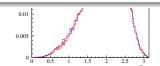
Same polarisation produces ẽ:s in t-channel only ⇒

Modification of Θ distribution with changed positron polarisation

Analyse assuming 100 fb⁻¹ for each of the polarisations configurations.

- P(e⁻)= +80 % and ..
- $P(e^+) = \pm 22 \% ...$
- $P(e^+) = \pm 30 \% ...$
- $P(e^+) = \pm 60 \% ...$
- ... and for $P(e^{-})=\pm 80 \%$ $P(e^{+})=0$

The handle: Opposite polarisation beams produces \tilde{e} :s in both s- and t-channel.


Same polarisation produces \tilde{e} :s in t-channel only \Rightarrow

Modification of Θ distribution with changed positron polarisation

Analyse assuming 100 fb⁻¹ for each of the polarisations configurations.

P(e ⁺)	significance	Title
(%)	of shift (σ)	of paper
22	2.4	"Limit on"
30	3.5	"Evidence for"
60	6.6	"Observation of"

• ... and for $P(e^{-})=\pm 80 \%$ $P(e^{+})=0$

