KILC12, Daegu, Korea

Norman Graf (SLAC)

Overview

- Physics Benchmarking Data Samples
- Detector Response Simulation
- Event Reconstruction
- Beyond the DBD

Presentations

- iLCSoft Status and Plans: F. Gaede
- Icsim Status: N. Graf
- Report of AIDA WG2 meeting: F. Gaede
- Common DBD samples: M. Berggren
- 1TeV Pair Backgrounds in ILD: A. Miyamoto
- Scintillator ECAL reconstruction: K. Kotera
- Hybrid ECAL study: H. Ueno
- New C++ Tracking in iLCSoft: F. Gaede
- FPCCD reconstruction: D. Kamai
- LCFIPlus Update: T. Suehara

Generators Common WG

- A cross-region and cross-concept working group was created to coordinate event generation.
 - Tim Barklow, SiD/Americas
 - Akiya Miyamoto, ILD/Asia
 - Mikael Berggren, ILD/Europe
 - Stephane Poss, CLiC
- DBD Benchmarks @ 1TeV

$$e^+e^- \rightarrow vvh^0$$
 $e^+e^- \rightarrow W^+W^ e^+e^- \rightarrow t\bar{t}h^0$

DBD Physics Benchmark Samples

- 1 TeV
 - vvh: signal done. tt(6f) as background done. yet to be copied to GRID after fixing file names, ...
 - tth, ttbb, ttz : done (50k events), on GRID
 - 4f for WW: done. Generated $1ab^{-1}$ samples Note: $s \sim O(10)pb$. $1ab^{-1} \sim O(10)M$ events. Too much ...
 - 2f: done and on GRID. (eey with a cut for ee)
 - Pair backgrounds: done 1300 BX on GRID ($\sim \frac{1}{2}$ of bunch train)
 - Low Pt, $\gamma\gamma$ background (pythia): done but not on GRID
 - High Pt $\gamma\gamma$ and e γ background (whizard): done but not on GRID
 - High Pt $\gamma\gamma$ mini-jets : Need optimization of generation level cut.
- 500 GeV
 - 6f for tt : Issues LOI or New samples ?
- Meta info web at DESY, KEK, will be in SLAC.
- Some details of the analyses remain to be decided.

iLCSoft

- improved/adopted core tools
 - LCIOv2, GEAR, CED,....
- improved realism of the simulation
 - include gaps, imperfection and services
- complete re-write of tracking code!
 - old code unmaintainable and cannot easily cope with high backgrounds
- adaption of reconstruction algorithms (PFA, Flavor tag) to new technology options

increased realism in ILD_OX models

added cabling and services for TPC, ECal & Hcal (C.Clerc, G.Musat)

including inner detector services as defined by R&D groups

-27,

Sep

Korea,

Frank Gaede, KILC12,

electronics

big step forward in increasing realism of ILD detector simulation!

power supply cables

new C++ tracking: MarlinTrk

- new common API for developing tracking code (TPC, Silicon, Fwd)
- provides loose coupling between patrec and fitting
- defined abstract interface IMarlinTrk and implement using KalTest/KalDet
- currently lives in MarlinTrkProcessors

new C++ tracking: patrec activities

ForwardTracking

 new forward tracking patrecusing cellular automaton (R.Glattauer)

- new TPC patrec recently:
 - fixed memory consumption
 - cleaned up code & algorithm
 - use new IMarlinTrk/MarlinKalTest

MarlinTrkProcessors

- rewrite of 'old' SiTracking and FullLDCTracking using MarlinTrk/MarlinKalTest
- recently added proper 1D strip measurements

Summary & Outlook

- new tracking for ILD has been developed and released in iLCSoft v01-13-05:
 - Clupatra (topological TPC patrec)
 - C++ re-write of SiliconTracking and FullLDCTracking
 - ForwardTracking
- recently included the proper treatment of 1d hits for double strip stereo layers in SIT/SET and FTD
- started to combine ForwardTracking and SiliconTracking
- To Do
 - test everything more thoroughly
 - understand (in)efficiencies (and fix issues)
 - iterate the material description to get probabilities and pulls right
 - time before DBD Monte Carlo production is short
 - let's see...

Icsim

- Large amount of work still to be done to complete the DBD physics benchmark analyses.
- Optimize global system design
- Improving realism of detector model
- Improving and characterizing tracking
- Adapting reconstruction software to latest versions of LCIO, PandoraPFA and LCFIPlus
- Benefitted enormously from the CLiC CDR effort
 - Reconstruction of high energy and high background
 - Automation of Grid submission of jobs

slic

- Updated to Geant4 9.5
- Store and save calorimeter hit positions within cells to enable more refined hit calculations.
- mesh2gdml provides CAD interface
- Improvements for non-ILC users
 - HPS@Jlab
 - Muon Collider

Icsim Tracking

- PixSim provides an extremely flexible and detailed silicon response simulation package.
- trf toolkit contains a well-tested detector model, track & hit classes and Kalman filter fitting code which accounts for energy loss and MCS.
- ftf toolkit provides a fast, efficient, pattern recognition package based on a conformal mapping of hits on topological layers.

ILD Calorimeter Reconstruction

- Two efforts involved in development of alternatives to Si-W Ecal
- Overlapping scintillator strips 5 x 2 x 45 mm
 - Strip Splitting Algorithm developed, "pseudo cells" fed to PandoraPFA
 - Jet Energy Resolution comparable to SiECal
 - Optimizing Layer Structure and PFA tune
- Hybrid uses Si & Scintillator as active layer.
 - Calibration procedures developed
 - Performance will be characterized
 - Design will be optimized

Scintillator strip ECAL for ILD

- In an example of Model
 - 25 absorber layers
 - 3 mm thick W → 21.5X₀
 - plastic scintillator
 - 5 mm wide
 - 45 mm length
 - 2 mm thick
- JER/√E < 30% @ √s =91 GeV necessary.

strips in odd layers are orthogonal with respect to those in even layers.

Hybrid ECAL Configuration

Sc layer

45mmx5mm strips

orthogonal

5mmx5mm spacial resolution

possibility of ghost

Si layer

5mmx5mm cells

FPCCD vertex detector

3

FinePixeICCD vertex detector

□ Pixel size : 5 x 5 um²

■ Number of pixels : $\sim 10^{10}$

Read out time : Inter-train

Fully depleted sensor

KILC 12 April 25. 2011

FPCCD Software

- FPCCDDigitizer
 - Converts SimTrackerHits to raw pixel hits
- FPCCDClustering
 - Clusters neighboring pixels, calculates energy weighted centroid and uncertainties
 - Cluster shape used to reject background hits.
- FPCCDOverlayBX
 - merges background into physics event
- Developed and installed into MarlinReco.
- Improved resolution wrt LOI detector
- Incorporated into latest ILD Tracking

1 TeV Pair Backgrounds in ILD

• Although "cone of death" avoids the detector, direct and albedo tracks contribute to large backgrounds in vertex detector.

1 TeV Pair Backgrounds in ILD

- Studied latest GDE beam parameters for 1 TeV and 500 GeV
 - ILD_O1_v02 , Mokka-07-07-p06
- VXD
 - 500 GeV result is consistent with LOI result (assume 4pixels/hit)
 - CMOS-like VXD
 - Hit occupancy of SimTrackerHit at 1 TeV was about x4 of 500 GeV
 - Accounting phi-dependence of hit distribution, occupancy ~x3 larger
 - Faster readout would be required.
 - FPCCD-like VXD (smaller pixels, inter-pulse readout)
 - Occupancies at the inner layers would be higher.
- TPC, FTD, BCAL: 3~4 times more hits at 1 TeV-B1b
- 500 GeV ILD_O1_V02 ~x3 more TPC hits than ILD_00fwp01
- Causes of the difference being investigated

LCFIPlus

NIM A 610 573 (2009)

LCFIVertex

- vertex finder & flavor tagger
 for LOI
- neural net difficult to extend

arXiv:1110.5785

Jet Finding

- * need to improve for multijet events
- vertex first, jet second approach

LCFIPlus

- vertex finding, jet finding, flavor tagger in one package
- * exploit TMVA
- * flexible XML configuration

Included in ilcsoft since v01-13

Vertex-Jet Finding Overview

Difficult to separate two
 b-jets which are close.
 Ordinary kt algorithm tends
 to merge them.

arXiv:1110.5785

This effect is particularly pronounced for final states with many b jets, e.g. Zhh

3. This results in an increased chance of correct jet separation.

Single ("Ghost") Track Selection

- Normal vertex finder needs > 2 tracks
 - -> loose many vertices
- Single track vertex can be found by using other vertex direction
- Improves b-tagging performance

Event	0 vtx	1 vtx	>= 2 vtx
bb normal	322	1052	426(24%)
bb +single	322	459	1019(57%)
cc normal	1003	779	18(1.0%)
cc +single	1003	715	82(4.6%)

LCFIPLus Summary and Outlook

- Software infrastructure now in place for ILD DBD production
 → have complied with technical requests, to be included into the next ilcsoft cycle (~few weeks)
- Will continue working with SiD for a smooth transition from LCFIVertex to LCFIPlus
- Physics performance not yet satisfactory. Need a better understanding of physics and TMVA behavior. In particular:
 - additional tuning of vertex/jet finding & input variables
 - alternative multivariate algorithms ?
 - normalization of output classifiers ?

SID DBD

- Benchmark analyses
 - Will produce pre-mixed files with 80%/20%, incl. SM/machine backgrounds.
 - Samples will be made available for Snowmass2013
- Simulation/Reconstruction
 - sid_dbd (Baseline) ~LOI geometry with more realistic detector description
 - Options: Pixel tracker, Analog scintillator HCAL, ...
 - Most likely just performance characterization, not benchmark analyses.

Optimizations and test of reconstruction tools in progress ...

Benefitted enormously from the CLIC_CDR excercise

Reconstructions of high energy and high background events

DIRAC based production tools

- MC Production
 - Hope to start production as soon as remaining details of analysis are resolved, probably simulation first.

ILD DBD

- Benchmark analyses
 - Simulate/Reconstruct full set of polarization sample.
 Mixed to 80%/20% at analysis.
 - Background overlay after simulation
- Simulation/Reconstruction
 - 3 options:
 - SiECAL+AHCAL
 - SiECAL+DHCAL
 - SciECAL+AHCAL
 - Mokka validation in progress
 - Full C++ tracking developed.
 - PFA and LCFI+ validation in progress

detector	person	status
VXD	G.Voutsinas	ongoing
SIT/SET	K.Androsov	to be done
FTD	J.Duarte	to be done
TPC	S.Aplin	done
ECal	D.Jeans	done
AHCal	Sh.Lu	done
SDHcal	G.Grenier	done
FCal	A.Rosca, B.Pawlik	
Muon	A.Saveliev	ongoing

start MC production, once all sub detectors are 'approved'

Beyond the DBD...

- Meeting of software developers at CERN, 2/12, to discuss future of sim/reco efforts
 - general consensus to work towards a common simulation application
 - build on the ongoing work for detector description and geometry (AIDA WP2)
 - define a geometry API for reconstruction
 - setup a working group to work towards that goal
 - work towards a common track reconstruction package in C++ (e.g. ftf or trf for Si-Tracking)
 - Devote additional effort to digital HCal in PandoraPFA
 - Proposed common DST format for basic analyses
 - should start when DBD software work reduces
- ALCPG supporting HPS@Jlab, Muon Collider physics and detector studies, and Snowmass 2013.

AIDA WP 2: Common Software

- 4 year EU project to develop core software tools that are experiment-independent and useful for the HEP community
- USolids Geometry: one common C++ package of 3D primitives for Geant4, root & others
- DD4Hep: Generic Detector Description Model
- Generic Tracking
- Calorimeter reconstruction based on PFA
- Alignment

Thanks!

- To those working on simulation, reconstruction and analysis infrastructure and to the speakers presenting the results.
- Thanks again to the local organizing committee and support staff for an enjoyable and rewarding conference.