TRACKING AND VERTEXING SUMMARY

Suyong Choi Korea University

Outline

- Vertex/tracking detector for ILC
- Vertex detector for CLIC
- LCTPC

DEPFET

DEPFET

Applications

- Belle-II $50x75 \mu m^2$, $75 \mu m$ thick
- ILC 25x25 μm^2 , 50 μm thick

PXD6 Sensor Production

• 50 micron thick sensors (50x75 and 50x50 μm^2) produced

PXD9 Sensor

- Final design for Belle, 75 micron thick
- Plan: Prototype run followed by production run

ASICs

- Close to final designs ready, produced and working
- DHP02 needs to be moved to TSMC 65nm process

DCD (drain current digitizer)

fully functional at full readout speed (600MHz)

DEPFET Test Beam

- PXD6 and ILC designs readout at 100MHz or 320 MHz
- Results
 - ILC design: S/N: 20 ~ 40
 - $25x25 \mu m^2$, $450 \mu m$ thick sensor
 - Belle2 design:S/N \sim 40 for 50 μm thick sensor
 - translates to S/N ~ 60 for 75 μm thick
 - Position resolution for Belle2 design 12 μm slightly better than binary RMS (14.4 micron)
- Thin sensor performance demonstrated!

DEPFET – Cooling

Cooling

- Mockup and simulation tools used
- Belle-II (air + liquid cooling), ILC (air cooling)
- 1 m/s air flow needed for sufficient cooling
 - 2 μm deformation for 2 m/s, 0.7 μm amplitude vibration

ILC cooling

- Power pulsing exercised
- FEM analysis set up
- Port belle-2 mock up to ILC
- By DBD, full measurements
 + simulations

Mockup for Belle II

CPS – CMOS PIXEL SENSOR

CPS for ILD-VXD

- Two types of CPS
 - Inner layer 300 cm², resolution
 - Outer layer 3000 cm², power consumption

- 16x16 μ m² for spatial resolution t_{ro} ~ 50 μ s
- 16x80 μ m² for time resolution t_{ro} ~10 μ s
 - For time stamping
- Sensor prototypes produced in Q4/2011
 - Mimosa 30 inner layer prototype
 - Mimosa 31 outer layer prototype

CPS

- Double sided detector:
 - 6 mimosa-26 on each side of ladder, 8M pixels
 - Test beam in Q4 2011 @ CERN SPS $\pi^- > 100$ GeV beam

- New 0.35% X₀ prototype under construction
 - Beam test in Q4 2012

CPS

- Mimosa 30
 - 8x256 with 16x16 μm² pixels, 8x64 with 16x64 μm² pixels
 - 15e ENC with 10 μs readout
 - Beam test in Jun/Jul
- Mimosa 31
 - 48x64 with 35x35 μm² pixels
 - Beam test in 2013
- Meets VXD specs for $\sqrt{s} = 500$ GeV

- For $\sqrt{s} = 1$ TeV
 - $0.35 \rightarrow 0.18 \,\mu m$ process
 - Faster readout 2(inner)/10(outer)
 μs with accelerated read out techniques
 - >20% Less power consumption, good sensor throughput
 - Mimosa 32 exploratory chip under test
 - Prototypes for validating architecture to be submitted Q3/Q4 2012
 - Full scale block in 2013
 - Full scale prototype in 2014/15

FPCCD - FINE PIXEL CCD

FPCCD

- 2nd FPCCD readout ASIC
 - Total noise 16e < 30e
 - prototype power consumption:
 30.9 mW/ch > 6 mW/ch

- 3rd FPCCD readout ASIC
 - Changes to analog and digital readout
 - Process: 0.35 μm to 0.25 μm
 - 5.4 mW/ch
 - DNL and INL improved to within ±1LSB and 0.38%

Plan

- 2nd Prototype test using radiation sources
- 3rd prototype chip arrival in Oct

Cooling of FPCCD Vertex Detector

- To minimize charge transfer inefficiency due to radiation damage cooling to -40 C is optimal
- Use two-phase CO₂
 - Large latent heat of C02
 - Smaller flow rate
- Cooling system test mock up
 - No condensation
 - Heat penetration 20W/m measured
- Plans
 - Cooling test of dummy ladder/endplate
 - Circulating system

 CO₂ cooling blow system between -40C and 15 C

FORWARD TRACKING

Fiber Bragg Grating sensor for FTD

Temperature and humidity measurement with FBG

Sensitive to strain and deformations

CLIC VERTEX DETECTOR

VTX requirements for CLIC

- Vertex requirements
 - Efficient tagging of heavy states: 3 μm spatial resolution
 - <0.2% X₀ per layer
 - Coverage to 7°
 - Occupancy ~ A few %
 - Time stamping with 10ns accuracy to suppress bkgs.
- No technology that fulfills all requirements
 - Simulation impact of layout
 - Integration/assy., power pulsing, cooling
 - R&D on sensor and readout

- Post CDR design
 - Minimize cabling, vertical integration
 - inactive regions, Lorentz angle

Vertex Detector R&D for CLIC

- Pixel technology
 - $25x25 \mu m^2$
 - 10ns time stamping
 - 0.2% X₀: 200 micron thick Si –incl. support and cables

Hybrid

- Thinned detector (50 micron thickness) + readout chip (50 micron thickness)
- Need low mass Interconnect
- Hard to reduce material, difficult/expensive interconnect
- CLICpix: 65nm process, 25x25 μm^2 , ~2015
 - Test structures on 65nm tested OK
 - Demonstrator prototype to be submitted 2012: 64x64 pixel array

Integrated tech

- 3D integration of sensor and readout chip
- Charge collection in epitaxial layer $<1\mu m$
- More Difficult to achieve good time resolution with sufficient S/N
- TSV (medipix 3), edgeless sensors

Simulations

Sensor

- Charge collection
- Charge sharing
- Signal rise time

Backgrounds

- 5~10 hits per cluster for innermost vertex barrel layer from incoherent pair backgrounds
- 0.5%~1% occupancies

Power and Cooling

Power

- Kapton flex cable
- Deal with large and short current peaks
- Large currents along ladders
 - stitching across modules

Cooling

- Helical motion of air through double walled beam pipe and support
- Air speed: 11m/s at inlet
- Sensor deformation: ~ 2μm
 - Due to special barrel support
- Looks promising

LCTPC

LCTPC Status

MPGD Technologies

- DESY GEM (50 μm), triple GEM, new module tested end of summer
- Asian GEM $(100 \ \mu m)$ modules, double GEM, new processing, new readout electronics in 2013
- Micromegas new modules with integrated electronics should be tested in large prototype in DESY in July

Timepix

- Readout with both GEM and Micromegas
- Full module work started 120 timepix chips, 8M pixels

SALTRO16

- power pulsing reduces power by 1/60.
- Work started on final version (GdSP) for LCTPC

LCTPC

- Prototypes
 - LP1 test beam at DESY (1-6 GeV electron beam)
 - LP2 upgrade from LP1
 - Magnet using cryocoolers
 - new end plate(realistic material budget)
 - new cage field (end of 2012)

- Simulation suggests ion back-drift in amplification cause
 60 micron distortion. Gating system may be needed.
- Plans
 - Upgraded test beam facility to test momentum resolution
 - Hadron beam to test multitrack environment

BACKUP

DEPFET

- In-pixel amplification, thin active sensor, low power consumption
- All silicon module one material, self-supporting sensor
- Application: Belle-II and ILC
 - Belle-II requirements: 0.15% X₀ /layer, higher occupancy (x4) and radiation (x10) than ILC
 - Belle-II $50x75 \mu m^2$, $75 \mu m$ thick
 - ILC 25x25 μm^2 , 50 μm thick

FPCCD vertex detector

- Fine Pixel CCD
 - Pixel size ~ 5μm
 - Fully depleted epitaxial layer
 - Read out between trains (No power pulsing)
- FPCCD vertex detector
 - Double-sided ladder
 - 1.6x10¹⁰ pixels
 - Sensors and front-end ASICs inside a cryostat
 - Power consumption > 50W inside the cryostat
- Readout ASIC
 - Total power < 100W
 - 10 Mpix/sec
 - Noise + ADC accuracy < 30e (signal size 500 e)

CO₂ cooling for FPCCD VTX

- Cooling tube is attached to VTX end-plate and heat removed by conduction through CFRP ladder
- Return line of CO2 will be used to cool the electronics outside the cryostat (~200W/side)
- Inner support tube should be air-tight and filled with dry air/nitrogen in order to prevent condensation on the CO2 tube

Fiber Bragg Grating Monitoring

Fiber Bragg Grating sensor principle

- Environmental and structural monitor
 - Low material budget
 - Immune against high EM fields
 - Can be used in high and low temp.
 - Suitable in radiation environment

CLIC vertex detectors simulation layouts

	CLIC_ILD	CLIC_SiD	CMS
Material X/X0 (90°)	~0.9% (3x2 layer)	~1.1% (5 layer)	~10% (3 layer)
Pixel size	20 x 20 μm ²	20 x 20 μm ²	100 x 150 μm ²
# pixels	1.84 G	2.76 G	66 M
Time resolution	~10 ns	~10 ns	<~25 ns
Avg. power/pixel	<~0.2 μW	<~0.2 μW	28 μW

April 24th 2012

Vertex-Detector R&D for CLIC

Cooling

Power: 500W (50mW/cm²)

Forced dry air – baseline for barrel region

