CALICE AHCAL main meeting DESY, 12.-13.12.2011

Spartial resolution of AHCAL for EM showers

- First results -

Sebastian Weber University of Wuppertal

Introduction

- EM showers in had. Calorimeters
 - Dense, compact energy deposition
 - EM-hits once identified allow for precise track reconstruction (→ PFA)

- TB CERN '07 (positrons, without ECAL)
 - Rotated HCAL
- TB CERN '11 (electrons, Tungsten)

Theory in short

- Assume exp. shower profile
- Detector response (CoG) to track position is stepfunction:

$$x_{HCAL} = \frac{\sinh\left(\frac{x_{TRACK}}{b}\right)}{\sinh\left(\frac{d}{2 \cdot b}\right)} \cdot \frac{d}{2}$$

Track

- Shape parameter b depends on energy & layer
 - First layer: distinct step, last layers: smooth
- **Correct CoG by inverse function**

$$x_{HCAL}^{Corr} = b \cdot \operatorname{arsinh} \left(\frac{2}{d} \sinh \left(\frac{d}{2 \cdot b} \right) \cdot x_{HCAL} \right)$$

Testbeam data

- Combine data of several runs i.e. several stage positions
- Real world coordinates useless – need something tile-based: CellIndex

- Merge to single tile 40
- Fit profile
- Correct hits

Resolution

After correction:
 CoG ↔ track linear

50 r

Resolution

$$\left(x_{HCAL}^{(Corr)} - x_{TRACK}\right)$$

Corrected

Entries

Mean x Mean y

RMS x

RMS y

8757

14.61

14.61

8.634

8.998

 10^{2}

Resolution

- After correction: CoG ↔ track linear
- Resolution

50 r

- Corrected (RMS: 2.2mm)
 - σ1: 1.3mm (~90%)
 - Uncorrected (RMS: 3.3mm)

Corrected

Entries

Mean x Mean v

RMS x

RMS y

8757

14.61

14.61

8.634

8.998

 10^{2}

10

Preliminary results

- Analysis done for
 - CERN'07 data:
 0°, 10°, 20°, 28.3°
 - CERN'11 (Tungsten)
- Energy dependant spartial Resolution:

$$\sigma_{Spart} = \frac{a}{\sqrt{E}} \oplus b$$

 10° and 20° still need some 0.5 work...

data	а	b
0°	6.41±0.10	0.79±0.02
28.3°	3.99±0.11	0.90±0.02
W-AHCAL	5.34±0.17	1.81±0.02

Resolution - Problems

- Lots of "Noise" hits
- Overall CoG of several layers used:
 - Large distribution width at edges
 - Different shape parameter b per layer
 - Misalignment
 - → have to look at each layer
- Testbeam data
 - Sometimes disadvantageous runs
 - Runs with 3 different stage positions
 - Narrow beam at high energies
 - CERN'07 only
 - CERN'11: 60mm@40GeV
 - Only left half of tiles hit

Summary and Outlook

- First aproach to calculate resolution for EM showers
 - ~ 1-2mm for >10GeV
 - CoG calculated from several layers

- Analysis layer by layer
 - Alignment
 - Different shape parameters per layer
 - Only few hits to calculate CoG per layer
- Write code to apply results on each event
 - → Directly get corrected CoG
- Compare to Geant4

Summary and Outlook

- Rotation of HCAL at test beam: Layer by layer
 - Same tile hit in each layer

- More realistic: HCAL rotated in total
 - Design of ILD
 - Benefit from different impact position on tiles

- So far no TB data...
- Geant4 only