

LPNHE CALUR IPN MCMMM CSNSM inne

Stéphane CALLER, Christophe PEL Frédéric Dititico, gisèle MARNEN-s Nathalie SEGUIN-MOREAL

20 December 2016

Orsay Micro Electronics Group Associated

SKIROC : ECAL readout

- SKIROC2 : Silicon Kalorimeter Integrated Read-Out Chip
 - 64 channels, AMS SiGe 0.35 μ m, 70 mm²
 - Very large dynamic range:
 - HG for 0.5-150 MIP, LG for 150-2500 MIP
 - Auto-trigger, Analog storage, Digitization
 & Token-ring ReadOut
 - Testability at wafer level
- Front End boards crucial element
 - Collaboration with LLR and SKKU (Korea)

C detector with PCB ≈ 20 pF

SKIROC2 Analogue core

20 December 2016 Calice Electronics Meeting, DESY, Hamburg, Germany, 12/12/2011

SKIROC2: DC PreAmp, Fast and Slow Shapers

20 December 2016 Calice Electronics Meeting, DESY, Hamburg, Germany, 12/12/2011

DAC Threshold Linearity

Calice Electronics Meeting, DESY, Hamburg, Germany, 12/12/2011 20 December 2016

SKIROC2 Analogue Simulations/Measurements Omega

20 December 2016 Calice Electronics Meeting, DESY, Hamburg, Germany, 12/12/2011

SKIROC2: Fast Shaper noise

20 December 2016 Calice Electronics Meeting, DESY, Hamburg, Germany, 12/12/2011

Trigger efficiency (1)

20 December 2016 Calice Electronics Meeting, DESY, Hamburg, Germany, 12/12/2011

Trigger efficiency (2)

SKIROC2 : PreAmplifier ENC

C_d (pF)

0

33

e_n x C,

72.6

127.05

Α

0.4

0.7

A*181.5

72.6

127.05

В

664700

1400000

С

0

0

20 December 2016 Calice Electronics Meeting, DESY, Hamburg, Germany, 12/12/2011

20 December 2016 Calice Electronics Meeting, DESY, Hamburg, Germany, 12/12/2011

Linearity of High Gain Shaper

Calice Electronics Meeting, DESY, Hamburg, Germany, 12/12/2011 20 December 2016

MEASUREMENTS using SCA and internal ADC Autotrigger mode 1 MIP (4fC) threshold

<u> Mega</u>

POWER PULSING

- **Requirement:**
 - □ 25 µW/ch with 0.5% duty cycle
 - □ 500 µA for the entire chip

337 ns

Bandgap + ref Voltages + master I: switched ON/OFF

Time between 2 trains: 200 ms

Shut down bias currents with vdd always ON

P X

SK2 power consumption measurement:
 123 mA x 3.3V ≈ 40 mW => 0.6 mW/ch

Time between 2 bunch crosings:

Acq

2820x337ns=950µs

Train length:

4 Power pulsing lines : analog, conversion, dac, digital

Each chip can be forced on/off by slow control

Measurements						
Acquisition	88 mA , 290 mW	Duty Cycle =0.5%, 1.45 mW				
Conversion	27.3 mA, 90 mW	Duty Cycle =0.25%, 0.225 mW				
Readout	8.0 mA, 26.4 mW	Duty Cycle =0.25%, 0.066 mW				
Skiroc2 power consumption with Power pulsing: 1.7 mW ie 27 μ W/c						

SKIROC2 Summary

- Good performance of SKIROC2:
 - 0.5 Mip (2 fC) up to 2000 Mip (8 pC) dynamic range
 - 0.1Mip noise (0.4 fC ie 2500 electrons), minimum threshold 0.5 Mip, autotrigger mode
- 300 SKIROC2 will be packaged
 - For FEV8-CIP (design complete, PCB expected end January 2012)
- Test with FEV and sensors to be done at system level (power pulsing, DAQ)
- 4 Test Board
 - 2 OMEGA, 1 LLR, 1 SKKU

20 December 2016 Calice Electronics Meeting, DESY, Hamburg, Germany, 12/12/2011

()mega

Orsay Micro Electronics Group Associated

BACKUP SLIDES

20 December 2016

Orsay Micro Electronics Group Associated

SKIROC2 overview

Silikon Kalorimeter Integrated Read Out

- Chip
- 64 Channels
 - Difficult layout : 1MIP = 4fC, with digital activity !

- 250 pads
 - 17 for test purpose only
- Die size
 - 7229 µm x 8650 µm

20 December 2016 Calice Electronics Meeting, DESY, Hamburg, Germany, 12/12/2011

SILICON SENSORS (WAFERS) :

- Using 325µm thick Silicon Wafers => 26000e⁻/MIP
- C_{detector} estimated 9pF
 Add also 10pF due to PCB pads' capacitance
- PIN diode leakage up to 10nA / channel
 - Chip has leakage current capability

DETECTOR INTEGRATION

- Full power pulsing capability
 25 µW/ch => 24h operation of full slab with 2 AAA batteries !
- Dynamic Range : from ¹/₂ MIP up to 2500 MIP
- Auto-trigger, Analog storage, Digitization & Token-ring ReadOut

SKIROC2 One channel block scheme

20 December 2016 Calice Electronics Meeting, DESY, Hamburg, Germany, 12/12/2011

SCA detail

<u>()mega</u>

SKIROC2 analogue features

- Bandgap (reference voltage from Hardroc2b)
- Dynamic Range : from ½ MIP up to 2500 MIP
 With Cdetector = 20pF
- Analogue channel muting capability (PA can be shut down)
 - Common 4-bit adjustable gain
 - PIN diode leakage current swallow capability (up to 10nA)
- 180ns shaping time Slow Shapers for charge measurement
 - Optimized S/N
 - Antisaturation system in Gain 10 Slow Shaper
- Analogue signal-to-noise ratio : 17 (1500 e⁻ noise for 1 MIP)
- 2-bit shaping time adjustable Fast Shaper (50 to 100ns)
 Antisaturation system in Fast Shaper
- Analogue Memory depth : up to 15 events can be stored

SKIROC2 mixed features

- 10-bit DAC for discriminator threshold
 - With improved 4-bit adjustment on each channel
- Trigger Discriminator for autotrigger on 1/2 MIP
 - Better performance
 - Mask on each channel
- External Triggers now follow same path as internal ones
- 8-bit adjustable delay for peaking maximum signal
- (10 or 12-bit) ADC Discriminator from Parisroc
- Digitization of either time and charge or of both charges

- Common features with Hardroc & Spiroc (compatibility with any CALICE DAQ system)
 - Open Collector token-ring ReadOut
 - Multiplexed Slow Control & Probe
 - Redundancy on Data Out & Transmit On signal lines
 - 2 switchable StartReadOut Inputs & EndReadOut Outputs :
 - to prevent chip failure
- Improved Slow Control/Probe
 - Default value for Slow Control (already done in Hardroc2B & Easiroc)
- Very Complex Digital Part (~10% of the Die)
 - Manage Acquisition, Conversion, 15 SCA control, RAM, I/Os...
 - new layout (easier interconnections with analogue part)
 - minor modifications concerning some timings (allowing more latency to analogue signal during conversion)

SKIROC2 extra features (free R&D !)

- 1 ns TDC capability
- TDC facility to operate in ILC mode or in test beam mode
 200ns for ILC / 5µs for test beam
- Power consumption optimized
 - Power-On-Digital included for LVDS receivers
 - Each stage can be totally disabled
- Analogue and Digital probe system
- Tri-state multiplexed Analogue output
- Test purpose : few pads required, single ended 40MHz needed, default slow control configuration, "only" Acquisition/Conversion/ReadOut Command necessary

Read Out: token ring

- Readout architecture common to all calorimeters
- Minimize data lines & power

Calice Electronics Meeting, DESY, Hamburg, Germany, 12/12/2011 20 December 2016

	Q inj	Out_PA	Out_SS1	Out_SS10	
	1 MIP	639.6 µV	623.7µV	6.65 mV	
<	10	6.32 mV	6.236mV	66.47 mV	\sum
	100	63.2 mV	62.33 m∀	664.1 mV	
	200	126.4mV	124.7 mV	1317 mV	
	500	315.9 mV	311.5 mV	Saturation to 1.5V	
	1000	631.6 mV	622.4 mV		
	2000	1252 mV	1234 mV		
	2500	1465 mV	1437 mV		

<u>(mega</u>

SKIROC2 ADC Test : Board 1

20 December 2016

Calice Electronics Meeting, DESY, Hamburg, Germany, 12/12/2011

SKIROC2 ADC Test : Board 2

20 December 2016 Calice Electronics Meeting, DESY, Hamburg, Germany, 12/12/2011

Input signal: 3.8V@20dB in 10 pF=1000 Mip

1350 UADC ie 1V+674 mV= 1.674 V Scope measurement 1.580 V

Input signal: 3.8V@40dB in 10 pF=100 Mip

20 December 2016 Calice Electronics Meeting, DESY, Hamburg, Germany, 12/12/2011

<u>()mega</u>

FEV board

Devices bonded inside cavities, with total thickness below 1.2 mm

No external components

Bonding @CERN

20 December 2016 Calice Electronics Meeting, DESY, Hamburg, Germany, 12/12/2011