## $H \rightarrow WW^*$ study

ILC physics and software meeting Nov. 25. 2011 Hiroaki Ono Nippon Dental Univ.

# Analysis of $H \rightarrow WW^*$ (4j)

Same cuts with Takubo-san's analysis

- 1. 70 < Miss mass < 140 GeV
- 2. W11 Y minus > 0.0005
- 3.  $|\cos\theta_{\rm h}| < 0.95$
- 4. Max  $E_{trk}$  < 30 GeV
- 5. W1/W2 b-likeness < 0.2 (No b-jets)
- 6. b-likenss (2j) < 0.2 (Reject H→bb)
- 7. likelihood > 0.7

Likelihood variables

- 1. Missing mass
- 2.  $\cos\theta_{\rm h}$
- 3. W11 Y34
- 4. W1 b-likeness

5. # of charged tracks



## Higgs mass

Compare with takubo-san's result

Ecm=250 GeV, L=250 fb-1

Difference from the Takubo-san's cut : <u>Evis</u> ( $W \rightarrow vl$  rejection)



Likelihood cut discriminant looks different  $\rightarrow$  Caused by b-likeness and Y34 variable

140

160 180 200 Evis (GeV)

#### Background reduction summary

|          | All                                             | Rec     | Mh    | MM    | <b>Y</b> - | cosθ  | wblike | blike(2j) | Etrk  | LR   | Eff.  |
|----------|-------------------------------------------------|---------|-------|-------|------------|-------|--------|-----------|-------|------|-------|
| vvww(4j) | 678                                             | 678     | 611   | 604   | 603        | 579   | 564    | 548       | 536   | 367  | 54.2% |
| vvww     | 1486                                            | 1408    | 638   | 632   | 629        | 604   | 589    | 573       | 561   | 372  | 25.1% |
| vvbb     | 7101                                            | 7101    | 4628  | 4585  | 4001       | 3816  | 662    | 300       | 293   | 128  | 1.8%  |
| ZH all   | 10634                                           | 10396   | 6255  | 6194  | 5463       | 5219  | 1988   | 1592      | 1553  | 915  | 8.6%  |
| nlqq     | 298103                                          | 298103  | 34186 | 16975 | 14132      | 12410 | 11986  | 11746     | 11114 | 1060 | 0.4%  |
| nnqq     | 63649                                           | 63649   | 2382  | 2334  | 1890       | 1712  | 1400   | 1354      | 1290  | 230  | 0.4%  |
| llqq     | 335756                                          | 335753  | 5502  | 2611  | 2278       | 913   | 612    | 571       | 535   | 68   | 0.0%  |
| nnll     | 108074                                          | 58504   | 6249  | 5553  | 90         | 80    | 80     | 80        | 70    | 0    | 0.0%  |
| aaaa     | 378726                                          | 378726  | 529   | 172   | 170        | 18    | 11     | 9         | 9     | 2    | 0.0%  |
|          | 753964                                          | 752157  | 16913 | 6836  | 2159       | 471   | 447    | 432       | 363   | 0    | 0.0%  |
| SM all   | 1938270                                         | 1886890 | 65761 | 34481 | 20719      | 15603 | 14535  | 14191     | 13380 | 1361 | 0.1%  |
|          | $H \rightarrow WW(4i)$ Signal significance: 7.7 |         |       |       |            |       |        |           |       |      |       |

Nov. 25. 2011

Takubo-san<sup>4</sup>s<sup>p</sup>results:7.6<sup>ing</sup>

## Update cut parameters

Now try to improve with some other cut parameters



5. # of charged tracks

Mh=140 GeV

#### Takubo-san's cut summary

| Process                                 | No cut  | After cuts | $\mathcal{L}_{\rm cut} > 0.79$ | $N_c = 2$ |
|-----------------------------------------|---------|------------|--------------------------------|-----------|
| $\nu\nu H(H \to \text{all})$            | 10,634  | 1,518      | 756                            | 546       |
| $\nu\nu H(H \to WW^* \to 4\text{-jet})$ | 680     | 512        | 348                            | 258       |
| lll                                     | 753,964 | 46         | 0                              | 0         |
| qqqq                                    | 378,726 | 8          | 3                              | 2         |
| $\ell\ell q q$                          | 335,762 | 409        | 94                             | 70        |
| $ u \ell q q$                           | 299,866 | 8,571      | $1,\!063$                      | 692       |
| ννℓℓ                                    | 103,704 | 3          | 0                              | 0         |
| $\nu\nu qq$                             | 63,649  | 1,090      | 207                            | 110       |
| SM all                                  |         | 10127      | 1367                           |           |