IP-BSM Status and Plan

13th ATF2 Project Meeting

Jan. 11, 2012 KEK, Tsukuba, Japan

Jacqueline Yan, M. Oroku, Y. Yamaguchi, T. Yamanaka, Y. Kamiya, T. Suehara, S. Komamiya (The University of Tokyo) T. Okugi, T. Terunuma, T. Tauchi, S. Araki, J. Urakawa (KEK)

overview

Before beam time (autumn 2011 ~).....

- Confirmed function for various part of system
- Laser : tuning, inspection, systematic monitoring
- Optimized reducer setting
- Realigned laser transport line
- Improved path alignment method → fast, precise, reproducible *important for mode switching*

Nov 2011 ~ Beam time

1st week: commissioned laser wire mode

Well focused σ_{laser} for both 2 deg and 30 deg modes

Commissioned interference mode for 2-8 deg mode

- Measured σy* at variety of modes { 2, 5, 6, 8 deg }
- Optimized M-detection method, new software for automated, more effective LW/ fringe scans
- Dec 16, 2011: Stable consecutive measurements at 5 deg mode

Status:
$$\sigma_{y}^{*} = 1058 \text{ nm} \quad M_{\text{meas}} = 0.55 \quad (5.04 \text{ deg})$$

(2.5 x β_x^* , 5 x β_y^* = 0.1 mm)

eventually σy* not small enough for 30 deg mode

Laser wire mode

Focused σ_{laser} to design size 1st time since May 2010 !!

Interference mode

in search of region of good resolution

continuous measurement

Signal jitter Status

For final measurements at 5 deg Signal jitter ~ 21% (30 avg data)

Sig. jitter $\sim 10 - 25$ % in general

Not as heavy as previous run, not major issue for M detection (c.f. > 30% in Dec 2010)

However occasionally worse

Why??

- Laser path hit edge of prism/lens ?
- Laser drift
- Intensity fluctuation

Lighter after switching to 6 deg Ex: 30% jitter (7.8 deg) 🗲

beam intensity: fringe scan Dec 16, 2011

Beam time conditions

7 6 5 4 3 2 1 0 20 40 60 80 100 120 140 160 180 200 event no.

Positive :

- initial periods: low BG levels , S/N favorable .
- High and stable beam intensity
- stable laser timing and intensity

Negative:

- Later on, high emittance \rightarrow large divergence and BG
- Low signal energy
- laser position jitters / drifts
- bad laser profile

	avg E_{BG} [GeV]	BG fluc.	S/N
startup week	17	29%	4.5
2nd week	8.2	20%	3 - 4
2 deg, 1st detection	55	16%	0.5
8 deg	24	17%	1
$3.5 \deg$	45	17%	0.5 - 1
5 deg	45	18%	1
	startup week 2nd week 2 deg, 1st detection 8 deg 3.5 deg 5 deg	avg E_{BG} [GeV] startup week 17 2nd week 8.2 2 deg, 1st detection 55 8 deg 24 3.5 deg 45 5 deg 45	avg E_{BG} [GeV]BG fluc.startup week1729%2nd week8.220%2 deg, 1st detection5516%8 deg2417%3.5 deg4517%5 deg4518%

S/N ~ 1 for interference mode

Beam time conditions

,

Vertical emittance >~ 50 pm , large divergence (multi-knobs, xy coupling , rotated beam) Cause gamma rays to hit collimators \rightarrow signal energy loss

High BG , low S/N (~ 1) after switch back to smaller β*y *low S/N makes M detection more challenging But not a major problem this time*

(c.f. Last run: S/N < 0.5, a major cause of signal jitters and M detection failure)

Comparing typical beam time conditions

	May, 2010	Dec, 2010	Dec, 2011
Avg BG	~ 20 GeV	∼ 115 GeV	~ 45 GeV
S/N	5–10 (Max~30)	~ 0.5	1~3.5
Sig. jitter	10 %	25 - 30 %	15-25%
Avg Sig. Energy	130–250 GeV	50 GeV	~ 80 GeV
Laser spot size	15–20 μm	25 – 35 μm	10 – 15 μm
ICT [10^9 e-/bunch]	4.5 – 5	3	5-7

Current status : laser system

region	status		
1 relative timing	Stability ~ 500 ps ; ~ 1.5% on stat.errors Timing module setting optimized		
2. intensity	Stability ~ 1% ~ 1 % on stat. errors improved !! after tuning laser cavity and timing scans		
3. temperature	Generally meet standards , constantly monitored		
4. Oscillation	Flash lamp, seeder checked, Stable build-up timing		
5. profile	Peculiar non-Gaussian form, chipped, dark spots		
6. Laser position jitter	affect sig. jitters <i>Not as significantly as before (?)</i> But need direct PSD caliberation first		
7 Laser position drift	Need to realign often Related to temperature (?)		

Alternative method for M : ON/OFF method

Laser "ON" events : laser colliding with the beam (←→ total energy deposit)
Laser "OFF" events: laser timing is moved away (←→ BG)
determine BG without relying on fitting

Sig = ON – OF F

Subtract BG (OFF) from the peak and valley of ON \rightarrow Max and Min of signal

M = (Max-Min) / (Max + Min)

Problem: 3.5 deg

3 types	12/16: 3.5 deg	M_{fit}	σ_{fit}	M _{tot}	M_4	M_{2nd}
Compare to "Mfit"	12:39	0.842 ± 0.023	820.53 ± 65.43	0.70	0.76	0.73
 all 5 detector layer front 4 layers: M4 	s: Mtot	final 5 deg	: quite consiste	ent		
3. 2 nd layer: M2nd	12/16: 5.04 deg	M_{fit}	σ_{fit}	M _{tot}	M_4	M_{2nd}
	15:55	0.571 ± 0.013	1016.25 ± 21.08	0.54	0.52	0.57
	15:58	0.584 ± 0.014	994.63 ± 22.57	0.52	0.63	0.51
	16:00	0.575 ± 0.021	1010.12 ± 33.1143	0.55	0.57	0.62
	16:05	0.546 ± 0.020	1055.5 ± 32.03	0.62	0.58	0.54
	16:07	0.500 ± 0.016	1129.75 ± 26.37	0.58	0.58	0.55
	16:09	0.469 ± 0.013	1182.02 ± 22.0	0.49	0.44	0.43
	16:12 (30 avg)	0.570 ± 0.014	1018.02 ± 22.37	0.62	0.54	0.57

Low Compton Energy

seem to be loss in Compton signal energy deposit,

LW peak Esig, lower than previous runs and simulation

Theoretically N ~ = 1.4 × 10⁴, **98 GeV expected** However ,in reality **LW peak energy generally below 25 GeV** sometimes suddenly decreased to half in the middle of beam time

Possible causes:

- signal gamma rays hitting one side of the collimator blocks
- lead blocks of the fixed 20φ collimator need major realignment
- Beam trajectory not properly aligned to BPM centers + large beam divergence

<u>solutions</u>

- Rearranged collimator blocks
- polaroids + collimator scans to confirm gamma rays passed
- After some beam angle tuning, Esig increased slightly, but still too low

Proposals:

- Realign collimator, reconsider collimator aperture
- Cross-checking using different detector layers
- Angular scan of the e- beam angle to directly confirm the effect of small angular jitters on beam centering to the Shintake Monitor detector.

Inconsistent LW results between upper and lower path

Problems with upper path LW scans:

- More signal fluctuations (realtime on status monitors)
- σlaser is more focused
- worse peak precision and pointing stab

Why??

- upper path laser beam is hitting the edge of the prism (??)
- enters the final lens too offset from center

(signal jitters were largest at 8 deg mode, when laser beams pass closest to the edge of prisms)

Bias effect from **BG modulation**

riding on top of signal in the same phase \rightarrow cause $\sigma y *$ to be measured larger than actual.

Possible Causes:

- Fluctuation over time of reference shower
- shot-by-shot fitting not weighted correctly (PMT output , non-linearity , bug in program ???)

especially bad for initial 2 deg mode

• not so bad for final 5 deg mode

It happened in previous runs also !!

Examples:

12/16-17, 2010 quite bad scans that measured the smallest $\sigma y *$ (6 deg) Trying to commission 30 deg mode. (8 deg)

σy* may have been over-evaluated

May 2010, 8 deg σy ~ 300 nm BG modulation here is enhanced by 10 times

Systematic errors for current measurements:

Bias on M from "BG modulation effect"

mode	2 deg	$3.5 \deg$	5 deg
syst, error on M	3 - 5 %	$\sim 15\%$	~ 5%

Other systematic errors able to be evaluated for now				
		$1 \ \mu m$ at 2 - 8 deg		
laser power $+$ polarization	$C_{pow-pol}$	~ 98%		
relative pos. jitter	$C_{rel-pos}$	88.5 % - 99.2%		
laser position alignment	z: $C_{z,align}$	> 99.5%		
	t: $C_{t,align}$	~ 100%		
laser profile imbalance	z: $C_{z,pro}$	> 99%		
	t: $C_{t,pro}$	[99.8%, 99.9%]		
Fringe tilt	z: $C_{z,tilt}$	> 99.2%		
	t: $C_{t,tilt}$	> 98.6%		

Systematic errors for current measurements: Fringe Tilt

```
[1] current scenario: measuring \sigma y^* \sim 1 \ \mu m at 2 – 8 deg mode
Assume \sigma x = 20 \ \mu m, \delta \phi = 20 \ mrad
C(tilt) ~ 98.6% (transv), 99.2% (long.)
~ 7% beam size error
[2] switching to 30 deg (\sigma y^* \sim 300 \ nm)
> If \sigma x = 20 \ \mu m, \delta \phi = 20 \ mrad : C \sim 80\%, 67% error
> If \sigma x = 10 \ \mu m, \delta \phi = 20 \ mrad : C \sim 95\%, 20% error
> If \sigma x = 10 \ \mu m, \delta \phi = 10 \ mrad : C \sim 98.5\%, 5% error
```

For 174 deg, after feedback by PSDs expect C ~ 99.7% for $\sigma x \sim 2.2 \ \mu m$

To suppress bias due to fringe tilt

- Align laser paths more precisely $\rightarrow \delta \phi < 10$ mrad
- Need smaller σx large $\sigma x \sim 20 \ \mu m$ makes it hard !!

Requirements for beam time conditions

Parameters	Requirement / goals
BG energy	suppress fluctuation
S/N	3-4 (>1 at least)
Sig. Energy	Should meet expectation 40- 50 GeV in laser wire peak
Sig. jitter	< 20 % better to be around 10%
Laser spot size	10–15 μm <i>now OK</i>
Laser pointing stability	< 1 μ m @ IP (< 50 μ m @ other PSDs on optical tables)
ICT [10^9 e-/bunch]	6 – 7 x 10^9 / bunch , fluc < few% now OK

Goal and Plans 2012 ~ smooth switching to 30 deg, 174 deg mode

More details coming up in next presentation

Summary

- ✤ IPBSM : commissioned for 1st time after earthquake
 - laser wire mode,
 - interference mode (2-8 deg)
- stably measured σy* ~ 1 μm

Various hardware/ software upgrades since summer Improvements in laser focusing, signal jitters, timing/intensity stability

Towards achieving goals in 2012:

- resolve precision problems and bias factors
- Improve reliability and effectiveness of IPBSM as beam tuning device

• BACKUP

2010		BG, mod.	Sig. mod	avg BG ($/$ ICT)	S/N
5/20	10:34	~ 0.15	0.87	4.3 GeV	~ 15
8 deg	10:35	~ 0.3	0.85	4.8 GeV	
	10:38	~ 0.2	0.86	4.6 GeV	
12/16	6 deg	~ 0.2	~ 0.9	$\sim 40 \text{ GeV}$	~ 0.5
12/17	8 deg	~ 0.2	~ 0.5	~ 40 GeV	

Expected performance and resolution

Post Earthquake Recovery and Confirmation

Confirmation of system

- Inspected each component according to a checklist (see next slide)
- Point is to restore system back to where we left off in the last beam run
- Check for damage (every component!!) , confirm proper function
- reconstruct laser path for each mode
- Confirm with laser wire mode (reducer scan): change in size on screen at low power
- Confirm phase scan with phase monitor output
- Additionally focal point scan for 174 deg mode, check mover visually

-Shintake Monitor – final doublet

- 2. DAQ modules, ADC, VME, EPICS, controller stages, read out state
- 3. Interlock, attenuator, profile
- 4. Optical components, reducer, PSDs, optical paths
- 5. Screen monitor, IP mover, viewport safety
- 6. detector, collimator scan, BG monitor

Current confirmation status

region	confirmed	still to be resolved
1 laser table	Oscillator, flash lamp Timing, power Temp dependence	
2. DAQ, control system	DAQ modules (ADC, VME,) Controller stages Thorlab actuators EPICS, data logger	status read out from ATF-menu
3. transport	Laser profile be interlock attenuator	fore beam run begins
4. vertical table	Optical components path for each mode PSD , PD signals	PSD caliberation
5. IP	IP mover, screen monitor	PSD caliberation Viewport safety test
Post-IP	Detector comprehensively!! BG monitor	Collimator scan

Beam size status

10

6

14 Phase [rad]

12

Run of May, 2010 **"10 x** β_v * optics" low BG, high S/N $\sigma_{y,\min}^{*} = 310 \pm 30(stat.)_{-70}^{-10}(syst.)$ nm @8deg Run of autumn, 2010 – early 2011 back to nominal optics $\beta_{v}^{*}=0.1 \text{ mm}$ Low S/N :~ 0.5 High BG: ~ 40 – 130 GeV Signal Energy / ICT charge [arb. units] 40 Minimum beam size: 30 σ_{v}^{*} = 280 ± 90 nm 25 $M_{meas} = 0.918 \sim 0.984$ 20 15 (5.96 deg, 14:31 Dec 16, 2010) 10

