AHCAL software status for CALICE/ILD

Shaojun Lu

shaojun.lu@desy.de

5th March 2012

Outline

- CALICE offline software for the AHCAL test beam
 - Centrally supported packages for basic reconstruction and simulation/digitization: calice_userlib, calice_reco, calice_sim and script generator package calice_run
 - Centrally supported packages for special tasks:
 calice_cddata, calice_db_tools, calice_calib
 - Analysis code provided by users (using fully reconstructed data):
 - calice_analysis

AHCAL reconstruction

- Centrally supported packages for basic reconstruction and simulation/digitization: calice_userlib, calice_reco, calice_sim and script generator package calice_run
 - Intensive usage and feedback from all analyzers.
 - The logical treatment of the data has been improved continuously.
 - Newly requested features have been (will be) implemented.

AHCAL experts software

- Centrally supported packages for special tasks:
 - calice_cddata, calice_db_tools, calice_calib
 - Some processors also relevant for analysis
 (e.g. muon track identification)
- The support are also provided for these packages, and fully maintained on AFS and NAF system at DESY, which can be accessed for the groups who involves in the AHCAL R&D currently.

CALICE higher level software

• Analysis codes provided by users (using fully reconstructed data):

```
calice analysis
```

- A new repository has been created, and to be used for sharing the higher level CALICE analysis processors.
- Package provides examples steering files to
 - help new users to generate first physics plots
 - allow for reproducing results from CALICE analysis notes or final publications.

Outline

- Mokka drivers: ILD-AHCAL
 - New videau geometry for ILD-AHCAL Barrel
 - New mechanical endcap geometry design of ILD-AHCAL
 - Sensitive detector digitization

2nd Generation Prototype: Layer

Hcal Barrel Layers

LED

Current Implementation of Simulation Geometry

- The current mechanical active layers design
 - Implemented for Barrel and Endcap of ILD Heal calorimeter
 - The up-to-date AHcal endcap Mokka driver include frontend electronic too. (more realistic)

- Current implementation of detector layers:
 - 20 mm thick steel absorber: include 19 mm absorber and 2*0.5 steel cassettes
 - 3 mm thick scintillator tiles
 - readout board with integrated ASICS simulated by 0.7 mm FR4 and 0.1 mm Cu
 - 1.7 mm air gap for connectors, solder pins ...
- Front-end electronics at module ends were implemented
 - 0.5 mm steel, 2.8 mm FR4 and 0.4 mmCu

Mokka drivers: ILD-AHCAL

New videau geometry for ILD-AHCAL Barrel

Geant4 visualization for videau geometry implementation

Mokka drivers: ILD-AHCAL

New mechanical endcap design for ILD-AHCAL

- Geant4 visualization for updated endcap geometry implementation
- grey: endcap modules
- blue: front end electronics

Status of simulation

- Current update of Mokka driver in the barrel has be reported in detail here. both Tesla and videau geometry are available.
- Endcap has been updated follow engineering design, service has been implemented too.
- Current status of simulation
 - overall dimensions were already OK
 - service for both barrel and endcap are already in
 - updated details of active layer structure
 - updated cracks, to follow engineering design

Summary and outlook

- AHCAL CALICE software:
 - Fully implemented for the reconstruction and calibration.
 - Debugged during the explore of the intensive usage by users.
 - This strategy provide us a better software today than yesterday.
 - More higher level applications to be supported.
 - Go through the calibrations and hardware connection setup for the last test beam with hardware exports.
- AHCAL ILD Mokka drivers for ILC DBD:
 - The Mokka drivers for the barrel and endcap have been updated and implemented. The intensive test will be followed up.
- AHCAL test beam Mokka drivers:
 - Few bugs has been fixed for the previous test beam, And a new driver has been implemented for the W-AHCAL test beam with the hardware parameters.
 - A more flexible Mokka driver for the next generation AHCAL has been implemented, and under testing. And a Mokka module has been created too in the Mokka database.