3.5 GeV Superconducting Positron Stacking Ring

E.Bulyak⁽³⁾, P.Gladkikh⁽³⁾, A.Kalamaiko⁽³⁾, L.Rinolfi⁽¹⁾, T.Omori⁽²⁾, J.Urakawa⁽²⁾, K.Yokoya⁽²⁾, F.Zimmermann⁽¹⁾

⁽¹⁾ CERN, Switzerland
⁽²⁾ KEK, Japan
⁽³⁾ KIPT, Ukraine

Summer 2010 Miniworkshop, KEK T.Omori, J.Urakawa, F.Zimmermann

Conclusions: For continuous positron injection we need SR with damping time of 100 μs

Possible ways: Inection in longitudinal plane; Fast damping under extremely intensive CS; Superconducting ring

Positions of equilibrium orbit. Dispersion at injection azimuth η =0.6 m, momentum deviation $\Delta p/p$ =8 %, synchrotron frequency Q_s =1/15; 1/30. Ring circumference C=100 m, synchrotron damping τ_s =100 µs (333 turns)

12.10.2012

Resultant motion of injected particle. Dispersion at injection azimuth η =1.0 m, betatron amplitude X_b =5 mm,momentum deviation $\Delta p/p$ =3 %,synchrotron frequency Q_s =1/30, betatron tune Q_b = 1/412.10.2012POSIPOL'12 DESY Zeuthen.
P.Gladkikh

Ring layout. Energy E₀=3.5 GeV, circumference C≈144 m, bend.field B=6 T,
energy losses Δ E≈9.4 MeV / turn, synchrotron damping time τ_s ≈250 µs.
RA, regular arcs; AC, additional chicanes;
IS, injection septums; RF, rf-sections; PE, positron extraction.
POSIPOL'12 DESY Zeuthen.
P.Gladkikh

First order dispersion of single superperiod

12.10.2012

Dynamic aperture at injection azimuth. Momentum deviationΔp/p₀=3.5 %,dispersion at injection azimuth η=0.975 m. IB, injected beam;12.10.2012EO,equilibrim or bit of bit SB, septum blade.

Simulation parameters&results:

Number of injected particles 1000; Transversal beam emittance (rms) 2000*10⁻⁶ m*rad (normalized); Longitudinal beam emittance (rms) 0.15% x 1 mm; Beam distributions are cutoff Gaussian: 2.5 rms in transversal planes; 1.5 rms in longitudinal plane; Position of injected beam center $\Delta x = 38.5$ mm; Thickness of final septum 0.5 mm; Pulse deviation of injected beam from reference $(p_{inj}-p_o)/p_o=3.4$ %.

48 particles are being lost on septum blade at end of the first synchrotron cycle; after that particles are not being lost.

Thus, 952 particles are successfully injected, i.e. the injection efficiency is equal to 95 %.

12.10.2012

P.Gladkikh

Issue – large SR (RF) power

N_{pb}=4*10⁹ => Q_b≈0.64 nC => <I_{stor}>=0.64 A, ∆E=9.4 MeV, P_{SR}=6 MW

Positron source

Main parameters of stacking ring

Parameter	Value
Positron energy, GeV	3.5
Ring circumference, m	143.9
Bending field, T	6
RF frequency, GHz	2
RF voltage, MV	25
Harmonics number	960
Bunch spacing, ns	4
Beam energy losses, Mev/turn	9.4
Synchrotron damping time, µs	250
Normalized emittance of injected beam, m*rad	2000*10 ⁻⁶
Dispersion at injection azimuth, m	0.975
Pulse deviation of injected beam, %	3.4
Injection efficiency, %	~95

Summary

Stacking ring with the superconding bendings for the continuous positron injection is proposed.

The injection efficiency into proposed stacking ring is close to 95 %

The proposed ring can be used as the base for the further R&D

From the point of beam emittance it would be as very desirable to exlude the TDT from positron complex – three times lengthening of the CLIC

pulse ?

12.10.2012