Physics with polarised beams - in the light of LHC results

Mikael Berggren¹

¹DESY, Hamburg

POSIPOL, DESY-Zeuthen, Sept 2012

Mikael Berggren (DESY)

Physics with polarised beams

POSIPOL, Sept 2012 1 / 33

< ロ > < 同 > < 回 > < 回 >

Outline

- Introduction.
 - Why polarisation?
- Examples
 - TGCs and polarisation
 - SUSY:
 - The LHC picture

 - Near degenerate ẽ
 - Model independent WIMPs
- Conclusions.

イロト イ団ト イヨト イヨト

Introduction: Why polarisation ?

At the heart of the Standard Model (and it's extensions): Particles with different chirality are different. and If E >> m, chirality = helicity = polarisation

Hence, being able to prepare the polarisation of the initial states is a very powerful tool.

A D N A B N A B N A B N

For instance:

• Separates production diagrams:

- s-channel = vector-exchange \rightarrow opposite polarised beams.
- t-channel: opposite or same polarisation beams. But final state particles have the same polarisation as the parent.
- Couplings to L and R particles different \rightarrow For $e^+e^- \rightarrow ff$, $\sigma_{RL} \neq \sigma_{LR}$
- Most strikingly: NO coupling the W to e⁻_R nor to e⁺₁.
- In SUSY: often huge differences: Channel selection.
- Increase Statistics if *both* beams polarised: For s-channel, half the collisions are "sterile" if one beam un-polarised - even if the other in 100 % polarised !
 - Even if the Signal and Background have the same polarisation dependence, precision is better with polarisation, as there is up to a factor two to gain in the useful luminosity.

For instance:

• Separates production diagrams:

- s-channel = vector-exchange → opposite polarised beams.
- t-channel: *opposite* or *same* polarisation beams. But final state particles have the same polarisation as the parent.
- Couplings to L and R particles different → For e⁺e⁻ → ff, σ_{RL} ≠ σ_{LR}
 Most strikingly: NO coupling the W to e⁻_R nor to e⁺_L.
- In SUSY: often huge differences: Channel selection.
- Increase Statistics if *both* beams polarised: For s-channel, half the collisions are "sterile" if one beam un-polarised - even if the other in 100 % polarised !
 - Even if the Signal and Background have the same polarisation dependence, precision is better with polarisation, as there is up to a factor two to gain in the useful luminosity.

For instance:

Separates production diagrams:

- s-channel = vector-exchange \rightarrow opposite polarised beams.
- t-channel: *opposite* or *same* polarisation beams. But final state particles have the same polarisation as the parent.
- Couplings to L and R particles different → For e⁺e⁻ → ff, σ_{RL} ≠ σ_{LR}
 Most strikingly: NO coupling the W to e⁻_R nor to e⁺_L.
- In SUSY: often huge differences: Channel selection.
- Increase Statistics if *both* beams polarised: For s-channel, half the collisions are "sterile" if one beam un-polarised - even if the other in 100 % polarised !
 - Even if the Signal and Background have the same polarisation dependence, precision is better with polarisation, as there is up to a factor two to gain in the useful luminosity.

イロト 不得 トイヨト イヨト

For instance:

Separates production diagrams:

- s-channel = vector-exchange \rightarrow opposite polarised beams.
- t-channel: *opposite* or *same* polarisation beams. But final state particles have the same polarisation as the parent.
- Couplings to L and R particles different \rightarrow For $e^+e^- \rightarrow f\bar{f}$, $\sigma_{RL} \neq \sigma_{LR}$
- Most strikingly: NO coupling the W to e_R^- nor to e_L^+ .
- In SUSY: often huge differences: Channel selection.
- Increase Statistics if *both* beams polarised: For s-channel, half the collisions are "sterile" if one beam un-polarised - even if the other in 100 % polarised !
 - Even if the Signal and Background have the same polarisation dependence, precision is better with polarisation, as there is up to a factor two to gain in the useful luminosity.

For instance:

Separates production diagrams:

- s-channel = vector-exchange \rightarrow opposite polarised beams.
- t-channel: *opposite* or *same* polarisation beams. But final state particles have the same polarisation as the parent.
- Couplings to L and R particles different \rightarrow For $e^+e^- \rightarrow f\bar{f}$, $\sigma_{RL} \neq \sigma_{LR}$
- Most strikingly: NO coupling the W to e_R^- nor to e_L^+ .
- In SUSY: often huge differences: Channel selection.
- Increase Statistics if *both* beams polarised: For s-channel, half the collisions are "sterile" if one beam un-polarised - even if the other in 100 % polarised !
 - Even if the Signal and Background have the same polarisation dependence, precision is better with polarisation, as there is up to a factor two to gain in the useful luminosity.

イロト 不得 トイヨト イヨト

For instance:

- Separates production diagrams:
 - s-channel = vector-exchange \rightarrow *opposite* polarised beams.
 - t-channel: *opposite* or *same* polarisation beams. But final state particles have the same polarisation as the parent.
 - Couplings to L and R particles different \rightarrow For $e^+e^- \rightarrow f\bar{f}$, $\sigma_{RL} \neq \sigma_{LR}$
 - Most strikingly: NO coupling the W to e_R^- nor to e_L^+ .
- In SUSY: often huge differences: Channel selection.
- Increase Statistics if *both* beams polarised: For s-channel, half the collisions are "sterile" if one beam un-polarised - even if the other in 100 % polarised !
 - *Even* if the Signal and Background have the *same* polarisation dependence, precision is better with polarisation, as there is up to a factor two to gain in the useful luminosity.

A few concrete examples:

• **Top**:

- Top vector coupling: Need A_{LR}.
- Need one polarised beam to measure, and
- Δ(A_{LR})/A_{LR} gets smaller if the other one also is. (2 times @ 30 %, 3 times @ 60 %)

Higgs

- Separate Higgs-strahlung (s-channel) and WW fusion (t-channel, with v:s)
- Needed for total width of the Higgs.
- Background suppression for ZHH and ttH.

• SUSY:

- Determine mixing angles of LR mixed states, eg. $\tilde{\tau}$ or \tilde{t} .
- Selecting L or R sfermion production.
- Background suppression.

・ロト ・ 四ト ・ ヨト ・ ヨト

A few concrete examples:

- Top:
 - Top vector coupling: Need A_{LR}.
 - Need one polarised beam to measure, and
 - $\Delta(A_{LR})/A_{LR}$ gets smaller if the other one also is. (2 times @ 30 %, 3 times @ 60 %)
- Higgs
 - Separate Higgs-strahlung (s-channel) and WW fusion (t-channel, with v:s)
 - Needed for total width of the Higgs.
 - Background suppression for ZHH and ttH.
- SUSY:
 - Determine mixing angles of LR mixed states, eg. $\tilde{\tau}$ or \tilde{t} .
 - Selecting L or R sfermion production.
 - Background suppression.

- A few concrete examples:
 - **Top**:
 - Top vector coupling: Need A_{LR}.
 - Need one polarised beam to measure, and
 - $\Delta(A_{LR})/A_{LR}$ gets smaller if the other one also is. (2 times @ 30 %, 3 times @ 60 %)
 - Higgs
 - Separate Higgs-strahlung (s-channel) and WW fusion (t-channel, with ν:s)
 - Needed for total width of the Higgs.
 - Background suppression for ZHH and ttH.
 - SUSY:
 - Determine mixing angles of LR mixed states, eg. $ilde{ au}$ or $ilde{t}$.
 - Selecting L or R sfermion production.
 - Background suppression.

- A few concrete examples:
 - **Top**:
 - Top vector coupling: Need A_{LR}.
 - Need one polarised beam to measure, and
 - $\Delta(A_{LR})/A_{LR}$ gets smaller if the other one also is. (2 times @ 30 %, 3 times @ 60 %)
 - Higgs
 - Separate Higgs-strahlung (s-channel) and WW fusion (t-channel, with ν:s)
 - Needed for total width of the Higgs.
 - Background suppression for ZHH and ttH.
 - SUSY:
 - Determine mixing angles of LR mixed states, eg. $\tilde{\tau}$ or \tilde{t} .
 - Selecting L or R sfermion production.
 - Background suppression.

So, polarisation is

Needed to analyse the chiral structure of interactions

• Key observable ALR.

• Relative error goes as that of $P_{eff} = (P_{e^-} - P_{e^+})/(1 - P_{e^-}P_{e^+})$

- Useful to improve S/B:
 - Key-number $\mathcal{L}_{eff} = (1 P_{e^-} P_{e^+}) \mathcal{L}/2$
 - Useful even if S and B depends on P in the same way: error ∝ S/√B !

• See:

• Overview in hep-ph/0507011, Phys.Rept., 460 (2008).

I'll talk about a few full simulation analyses in more detail, demonstrating that the conclusions hold also when other beam-aspects and detector effects are included.

イロト イポト イヨト イヨト

So, polarisation is

- Needed to analyse the chiral structure of interactions
 - Key observable ALR.

• Relative error goes as that of $P_{eff} = (P_{e^-} - P_{e^+})/(1 - P_{e^-}P_{e^+})$

- Useful to improve S/B:
 - Key-number $\mathcal{L}_{eff} = (1 P_{e^-}P_{e^+})\mathcal{L}/2$
 - Useful even if S and B depends on P in the same way: error $\propto S/\sqrt{B}$!

See:

• Overview in hep-ph/0507011, Phys.Rept., 460 (2008).

I'll talk about a few full simulation analyses in more detail, demonstrating that the conclusions hold also when other beam-aspects and detector effects are included.

So, polarisation is

- Needed to analyse the chiral structure of interactions
 - Key observable ALR.

• Relative error goes as that of $P_{eff} = (P_{e^-} - P_{e^+})/(1 - P_{e^-}P_{e^+})$

- Useful to improve S/B:
 - Key-number $\mathcal{L}_{eff} = (1 P_{e^-}P_{e^+})\mathcal{L}/2$
 - Useful even if S and B depends on P in the same way: error $\propto S/\sqrt{B}$!
- See:
 - Overview in hep-ph/0507011, Phys.Rept., 460 (2008).

I'll talk about a few full simulation analyses in more detail, demonstrating that the conclusions hold also when other beam-aspects and detector effects are included.

So, polarisation is

- Needed to analyse the chiral structure of interactions
 - Key observable ALR.

• Relative error goes as that of $P_{eff} = (P_{e^-} - P_{e^+})/(1 - P_{e^-}P_{e^+})$

- Useful to improve S/B:
 - Key-number $\mathcal{L}_{eff} = (1 P_{e^-}P_{e^+})\mathcal{L}/2$
 - Useful even if S and B depends on P in the same way: error $\propto S/\sqrt{B}$!
- See:
 - Overview in hep-ph/0507011, Phys.Rept., 460 (2008).

I'll talk about a few full simulation analyses in more detail, demonstrating that the conclusions hold also when other beam-aspects and detector effects are included.

TGC:s and Polarisation

(I. Marchesini, PhD Thesis, DESY-THESIS-2011-044)

Polarisation measurement from data with the Blondel scheme:

$$\sigma = \sigma_{u} \left[1 - P_{e^{+}} P_{e^{-}} + A_{LR} (P_{e^{+}} - P_{e^{-}}) \right], \tag{1}$$

hence

$$P_{e^{\pm}} = \sqrt{\frac{(\sigma_{+-} + \sigma_{-+} - \sigma_{++} - \sigma_{--})(\mp \sigma_{-+} \pm \sigma_{+-} - \sigma_{++} + \sigma_{--})}{(\sigma_{-+} + \sigma_{+-} + \sigma_{++} + \sigma_{--})(\mp \sigma_{-+} \pm \sigma_{+-} + \sigma_{++} - \sigma_{--})}}$$

However: 100:s of fb^{-1} of all polarisation combinations needed to get to 0.2 %.

WW and Polarisation

Enter *WW* production : a high cross-section, highly polarisation dependent process

Ideally suited to make polarisation measurements, with less data than the Blondel scheme.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

TGC:s in WW

There is a catch, however:

Triple Gauge Couplings, which modify the assumed W-couplings.

TGC:s :

- 14 complex parameters, 8 CP conserving.
- In the SM: only 4 real parameters non-zero, all equal to unity.
- Deviations from SM loop-corrections and beyond SM physics

Deviations from the SM still allowed (by LEP), affecting the polarisation measurement up to the % level. LHC - using di-boson production - will eventually reach the few % level

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

TGC:s and Polarisation

TGC:s+Polarisation in WW

TGC:s modifies angular diff. cross-sections \rightarrow % level corrections to polarisation measurement \rightarrow fit TGC:s and polarisation simultaneously.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

If individually C and P conserving and real: 6 TGC:s, but one fixed by EM-gauge invariance. Gauge conditions: some relations \rightarrow 3 TGC parameters + 2 polarisations to fit.

Simultaneous fit : TGC:s

Result of simultaneous fit: TGCs

∃ > < ∃</p>

Simultaneous fit : TGC:s

Result of simultaneous fit: TGCs

∃ > < ∃</p>

Simultaneous fit : TGC:s

Result of simultaneous fit: TGCs

- Positron polarisation not needed.
- However, if there are CP-violating TGC:s, it is to observe them.

Simultaneous fit: Polarisation

Result of simultaneous fit: polarisation

3 > 4 3

TGC:s and Polarisation

Simultaneous fit: Polarisation

Result of simultaneous fit: polarisation

3 × 4 3

Simultaneous fit: Polarisation

Result of simultaneous fit: polarisation

- Outperforms Blondel scheme
- Much gain with positron polarisation

LHC results and SUSY

- The Higgs as seen by ATLAS and CMS:
- ... and it's implication for SUSY models (from A. Djouadi).
- Limits in the Constrained Minimal Susy Model (CMSSM) from ATLAS
- Limits in the "simplified SUSY model"

So: Is SUSY under pressure ??

< < >>

POSIPOL, Sept 2012 13 / 33

LHC results and SUSY

- The Higgs as seen by ATLAS and CMS:
- ... and it's implication for SUSY models (from A. Djouadi).
- Limits in the Constrained Minimal Susy Model (CMSSM) from ATLAS
- Limits in the "simplified SUSY model"
- So: Is SUSY under pressure ??

POSIPOL, Sept 2012 13 / 33

LHC results and SUSY

- The Higgs as seen by ATLAS and CMS:
- ... and it's implication for SUSY models (from A. Djouadi).
- Limits in the Constrained Minimal Susy Model (CMSSM) from ATLAS
- Limits in the "simplified SUSY model"

So: Is SUSY under pressure ??

< ロ > < 同 > < 回 > < 回 >

POSIPOL, Sept 2012 13 / 33

LHC results and SUSY

- The Higgs as seen by ATLAS and CMS:
- ... and it's implication for SUSY models (from A. Djouadi).
- Limits in the Constrained Minimal Susy Model (CMSSM) from ATLAS
- Limits in the "simplified SUSY model"

So: Is SUSY under pressure ??

POSIPOL, Sept 2012 13 / 33

() < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < ()

LHC results and SUSY

- The Higgs as seen by ATLAS and CMS:
- ... and it's implication for SUSY models (from A. Djouadi).
- Limits in the Constrained Minimal Susy Model (CMSSM) from ATLAS
- Limits in the "simplified SUSY model"

So: Is SUSY under pressure ??

POSIPOL, Sept 2012 13 / 33

() < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < ()

LHC results and SUSY

- The Higgs as seen by ATLAS and CMS:
- ... and it's implication for SUSY models (from A. Djouadi).
- Limits in the Constrained Minimal Susy Model (CMSSM) from ATLAS
- Limits in the "simplified SUSY model"
- So: Is SUSY under pressure ??

POSIPOL, Sept 2012 13 / 33

LHC results and SUSY

- The Higgs as seen by ATLAS and CMS:
- ... and it's implication for SUSY models (from A. Djouadi).
- Limits in the Constrained Minimal Susy Model (CMSSM) from ATLAS
- Limits in the "simplified SUSY model"

```
So: Is SUSY under pressure ??
```


POSIPOL, Sept 2012 13 / 33

.

LHC results and SUSY

- The Higgs as seen by ATLAS and CMS:
- ... and it's implication for SUSY models (from A. Djouadi).
- Limits in the Constrained Minimal Susy Model (CMSSM) from ATLAS
- Limits in the "simplified SUSY model"
- So: Is SUSY under pressure ??

POSIPOL, Sept 2012 13 / 33

→ ∃ → < ∃ →</p>

LHC: the fine-print

• Simplified models are (very) special cases: the produced SUSY particle goes directly to it's SM partner+MET.

SUSY

- CMSSM is also a (very) special case: coloured sector ↔ non-coloured sector.
- Production needs a gluino in reach.
- Only gen. 1&2 squarks (\approx no t, b in protons!)
- But what matters for naturalness is the third generation:
 - *M_H* is destabilised by fermion-loops
 - but boson-loops have the same size but opposite sign
 - ⇒ Divergences cancel !
 - For this to work: $M_{particle} \approx M_{sparticle}$
 - Higgs coupling ∝ Mass ⇒ what matters is the top !

POSIPOL, Sept 2012 14 / 33
• Simplified models are (very) special cases: the produced SUSY particle goes directly to it's SM partner+MET.

SUSY

- CMSSM is also a (very) special case: coloured sector ↔ non-coloured sector.
- Production needs a gluino in reach.
- Only gen. 1&2 squarks (\approx no t, b in protons!)
- But what matters for naturalness is the third generation:
 - M_H is destabilised by fermion-loops
 - but boson-loops have the same size but opposite sign
 - ⇒ Divergences cancel !
 - For this to work: $M_{particle} \approx M_{sparticle}$
 - Higgs coupling ∝ Mass ⇒ what matters is the top !

POSIPOL, Sept 2012 14 / 33

∃ > < ∃</p>

• Simplified models are (very) special cases: the produced SUSY particle goes directly to it's SM partner+MET.

SUSY

- CMSSM is also a (very) special case: coloured sector ↔ non-coloured sector.
- Production needs a gluino in reach.
- Only gen. 1&2 squarks (\approx no t, b in protons!)
- But what matters for naturalness is the third generation:
 - *M_H* is destabilised by fermion-loops
 - but boson-loops have the same size but opposite sign
 - ⇒ Divergences cancel !
 - For this to work: $M_{particle} \approx M_{sparticle}$
 - Higgs coupling ∝ Mass ⇒ what matters is the top !

POSIPOL, Sept 2012 14 / 33

3 > 4 3

• Simplified models are (very) special cases: the produced SUSY particle goes directly to it's SM partner+MET.

SUSY

- CMSSM is also a (very) special case: coloured sector ↔ non-coloured sector.
- Production needs a gluino in reach.
- Only gen. 1&2 squarks (\approx no t, b in protons!)
- But what matters for naturalness is the third generation:
 - *M_H* is destabilised by fermion-loops
 - but boson-loops have the same size but opposite sign
 - ⇒ Divergences cancel !
 - For this to work: $M_{particle} \approx M_{sparticle}$
 - Higgs coupling ∞ Mass ⇒ what matters is the top !

POSIPOL, Sept 2012 14 / 33

∃ ► < ∃ ►</p>

• Simplified models are (very) special cases: the produced SUSY particle goes directly to it's SM partner+MET.

SUSY

- CMSSM is also a (very) special case: coloured sector ↔ non-coloured sector.
- Production needs a gluino in reach.
- Only gen. 1&2 squarks (\approx no t, b in protons!)
- But what matters for naturalness is the third generation:
 - *M_H* is destabilised by fermion-loops
 - but boson-loops have the same size but opposite sign
 - \Rightarrow Divergences cancel !
 - For this to work: $M_{particle} \approx M_{sparticle}$
 - Higgs coupling ∝ Mass ⇒ what matters is the top !

• Simplified models are (very) special cases: the produced SUSY particle goes directly to it's SM partner+MET.

SUSY

- CMSSM is also a (very) special case: coloured sector ↔ non-coloured sector.
- Production needs a gluino in reach.
- Only gen. 1&2 squarks (\approx no t, b in protons!)
- But what matters for naturalness is the third generation:
 - M_H is destabilised by fermion-loops
 - but boson-loops have the same size but opposite sign
 - \Rightarrow Divergences cancel !
 - For this to work: $M_{particle} \approx M_{sparticle}$
 - Higgs coupling ∝ Mass ⇒ what matters is the top !

• Simplified models are (very) special cases: the produced SUSY particle goes directly to it's SM partner+MET.

SUSY

- CMSSM is also a (very) special case: coloured sector ↔ non-coloured sector.
- Production needs a gluino in reach.
- Only gen. 1&2 squarks (\approx no t, b in protons!)
- But what matters for naturalness is the third generation:
 - M_H is destabilised by fermion-loops
 - but boson-loops have the same size but opposite sign
 - \Rightarrow Divergences cancel !
 - For this to work: $M_{particle} \approx M_{sparticle}$
 - Higgs coupling ∝ Mass ⇒ what matters is the top !

• Simplified models are (very) special cases: the produced SUSY particle goes directly to it's SM partner+MET.

SUSY

- CMSSM is also a (very) special case: coloured sector ↔ non-coloured sector.
- Production needs a gluino in reach.
- Only gen. 1&2 squarks (\approx no t, b in protons!)
- But what matters for naturalness is the third generation:
 - M_H is destabilised by fermion-loops
 - but boson-loops have the same size but opposite sign
 - \Rightarrow Divergences cancel !
 - For this to work: $M_{particle} \approx M_{sparticle}$
 - Higgs coupling ∝ Mass ⇒ what matters is the top !

• Simplified models are (very) special cases: the produced SUSY particle goes directly to it's SM partner+MET.

SUSY

- CMSSM is also a (very) special case: coloured sector ↔ non-coloured sector.
- Production needs a gluino in reach.
- Only gen. 1&2 squarks (\approx no t, b in protons!)
- But what matters for naturalness is the third generation:
 - M_H is destabilised by fermion-loops
 - but boson-loops have the same size but opposite sign
 - \Rightarrow Divergences cancel !
 - For this to work: $M_{particle} \approx M_{sparticle}$
 - Higgs coupling ∝ Mass ⇒ what matters is the top !

POSIPOL, Sept 2012 14 / 33

A B F A B F

- Simplified models are (very) special cases: the produced SUSY particle goes directly to it's SM partner+MET.
- CMSSM is also a (very) special case: coloured sector ↔ non-coloured sector.
- Production needs a duino in reach

SUSY under pressure ?? No, but simple models are !

- But what matters for naturalness is the third generation:
 - M_H is destabilised by fermion-loops
 - but boson-loops have the same size but opposite sign
 - \Rightarrow Divergences cancel !
 - For this to work: $M_{particle} \approx M_{sparticle}$
 - Higgs coupling ∝ Mass ⇒ what matters is the top !

mayree [GeV]

∃ ► < ∃ ►</p>

A New bench-mark point

Remember, apart from naturalness:

- Anomaly in g 2 of the μ : Would prefer a not-too-heavy smuon.
- Dark matter : A WIMP of \sim 100 GeV would be required.
- EW symmetry breaking, coupling constant unification: points to NP at or below 1 TeV
- Suppress the SUSY flavour problem (FCNC:s etc): Heavy 1:st & 2:nd generation squarks would be nice ...
- Other low-energy constrains : $b \to s\gamma$, $b \to \mu\mu$, ρ -parameter, $\Gamma(Z)$...

Can all this be provided by SUSY ?

A New bench-mark point

Remember, apart from naturalness:

- Anomaly in g 2 of the μ : Would prefer a not-too-heavy smuon.
- Dark matter : A WIMP of \sim 100 GeV would be required.
- EW symmetry breaking, coupling constant unification: points to NP at or below 1 TeV
- Suppress the SUSY flavour problem (FCNC:s etc): Heavy 1:st & 2:nd generation squarks would be nice ...
- Other low-energy constrains : $b \to s\gamma$, $b \to \mu\mu$, ρ -parameter, $\Gamma(Z)$...

Can all this be provided by SUSY ?

A New bench-mark point

Remember, apart from naturalness:

- Anomaly in g 2 of the μ : Would prefer a not-too-heavy smuon.
- Dark matter : A WIMP of \sim 100 GeV would be required.
- EW symmetry breaking, coupling constant unification: points to NP at or below 1 TeV
- Suppress the SUSY flavour problem (FCNC:s etc): Heavy 1:st & 2:nd generation squarks would be nice ...
- Other low-energy constrains : $b \to s\gamma$, $b \to \mu\mu$, ρ -parameter, $\Gamma(Z)$...

Can all this be provided by SUSY ?

A New bench-mark point

Remember, apart from naturalness:

- Anomaly in g 2 of the μ : Would prefer a not-too-heavy smuon.
- Dark matter : A WIMP of \sim 100 GeV would be required.
- EW symmetry breaking, coupling constant unification: points to NP at or below 1 TeV
- Suppress the SUSY flavour problem (FCNC:s etc): Heavy 1:st & 2:nd generation squarks would be nice ...
- Other low-energy constrains : $b \to s\gamma$, $b \to \mu\mu$, ρ -parameter, $\Gamma(Z)$...

Can all this be provided by SUSY ?

A New bench-mark point

Remember, apart from naturalness:

- Anomaly in g 2 of the μ : Would prefer a not-too-heavy smuon.
- Dark matter : A WIMP of \sim 100 GeV would be required.
- EW symmetry breaking, coupling constant unification: points to NP at or below 1 TeV
- Suppress the SUSY flavour problem (FCNC:s etc): Heavy 1:st & 2:nd generation squarks would be nice ...
- Other low-energy constrains : $b \rightarrow s\gamma$, $b \rightarrow \mu\mu$, ρ -parameter, $\Gamma(Z)$...

Can all this be provided by SUSY ?

A New bench-mark point

Remember, apart from naturalness:

- Anomaly in g 2 of the μ : Would prefer a not-too-heavy smuon.
- Dark matter : A WIMP of \sim 100 GeV would be required.
- EW symmetry breaking, coupling constant unification: points to NP at or below 1 TeV
- Suppress the SUSY flavour problem (FCNC:s etc): Heavy 1:st & 2:nd generation squarks would be nice ...
- Other low-energy constrains : $b \rightarrow s\gamma$, $b \rightarrow \mu\mu$, ρ -parameter, $\Gamma(Z)$...

Can all this be provided by SUSY ?

New points

Can all this be provided by SUSY ?Yes, sure !

Take old ILC favourite benchmark SPS1a, and make the TDR point

New points

Can all this be provided by SUSY ?Yes, sure !

Take old ILC favourite benchmark SPS1a, and make the TDR point

New points

Can all this be provided by SUSY ?Yes, sure !

Take old ILC favourite benchmark SPS1a, and make the TDR point

Mikael Berggren (DESY)

POSIPOL, Sept 2012 16 / 33

New points

Can all this be provided by SUSY ?Yes, sure !

Take old ILC favourite benchmark SPS1a, and make the TDR point

Mikael Berggren (DESY)

New points

Can all this be provided by SUSY ?Yes, sure !

Take old ILC favourite benchmark SPS1a, and make the TDR point How ?

SPS1a: mSUGRA

- 5 parameters.
- One gaugino parameter
- One scalar parameter

TDR1: natural SUSY

- 11 parameters.
- Separate gluino
- Higgs, un-coloured, and coloured scalar parameters separate

Parameters chosen to deliver all constraints, \approx same ILC accessible spectrum \Rightarrow old analyses still valid !

$ilde{ au}$ in SPS1a'/ TDR 1-4

(Work by J. List, P. Bechtle, P. Schade, M.B., PRD 82,no5 (2010), arXiv:0908.0876)

SPS1a'/TDR 1-4 are similar SUSY models, just outside what is excluded by LEP and low-energy observations. Compatible with WMAP, with $\tilde{\chi}_1^0$ Dark Matter. At E_{CMS} = 500 GeV:

- All sleptons available.
- No squarks.
- Lighter bosinos, up to $\tilde{\chi}^0_3$ (in $e^+e^- \rightarrow \tilde{\chi}^0_1 \tilde{\chi}^0_3$)

Features of $\tilde{\tau}$:s in SPS1a'/ TDR 1-4

- The $\tilde{\tau}_1$ is the Next to Lightest Susy Particle (NLSP).
- For $\tilde{\tau}_1$: $E_{\tau,min} = 2.6 \text{ GeV}$, $E_{\tau,max} = 42.5 \text{ GeV}$: $\gamma\gamma - background \Leftrightarrow pairs - background$.
- For $\tilde{\tau}_2$: : $E_{\tau,min} = 35.0 \text{ GeV}, E_{\tau,max} = 152.2 \text{ GeV}$: $WW \rightarrow l\nu l\nu - background \Leftrightarrow Polarisation.$
- $\tilde{\tau}$ NLSP $\rightarrow \tau$:s in most SUSY decays \rightarrow SUSY is background to SUSY.
- For pol=(-1,1): $\sigma(\tilde{\chi}_2^0 \tilde{\chi}_2^0)$ and $\sigma(\tilde{\chi}_1^+ \tilde{\chi}_1^-)$ = several hundred fb and BR(X $\rightarrow \tilde{\tau}$) > 50 %. For pol=(1,-1): $\sigma(\tilde{\chi}_2^0 \tilde{\chi}_2^0)$ and $\sigma(\tilde{\chi}_1^+ \tilde{\chi}_1^-) \approx 0$.

Polarisation = (+,-) assumed.

Features of $\tilde{\tau}$:s in SPS1a'/ TDR 1-4

- The $\tilde{\tau}_1$ is the Next to Lightest Susy Particle (NLSP).
- For $\tilde{\tau}_1$: $E_{\tau,min} = 2.6 \text{ GeV}, E_{\tau,max} = 42.5 \text{ GeV}$: $\gamma\gamma - background \Leftrightarrow pairs - background$.
- For $\tilde{\tau}_2$: : $E_{\tau,min} = 35.0 \text{ GeV}, E_{\tau,max} = 152.2 \text{ GeV}$: $WW \rightarrow l\nu l\nu - background \Leftrightarrow Polarisation.$
- For pol=(-1,1): $\sigma(\tilde{\chi}_2^0 \tilde{\chi}_2^0)$ and $\sigma(\tilde{\chi}_1^+ \tilde{\chi}_1^-)$ = several hundred fb and BR(X $\rightarrow \tilde{\tau}$) > 50 %. For pol=(1,-1): $\sigma(\tilde{\chi}_2^0 \tilde{\chi}_2^0)$ and $\sigma(\tilde{\chi}_1^+ \tilde{\chi}_1^-) \approx 0$.

Polarisation = (+,-) assumed.

Extracting the $\tilde{\tau}$ properties

From decay kinematics:

- $M_{\tilde{\tau}}$ from $M_{\tilde{\chi}_{\star}^0}$ and end-point of spectrum = $E_{\tau,max}$.
- Need to measure end-point of spectrum.
- Other end-point hidden in γγ background: Must get M_{χ̃1}⁰ from other sources. (μ̃, ẽ, ...)

From cross-section:

•
$$\sigma_{\tilde{\tau}} = A(\theta_{\tilde{\tau}}, \mathcal{P}_{beam}) \times \beta^3/s$$
, so
• $M_{\tilde{\tau}} = E_{beam} \sqrt{1 - (\sigma s/A)^{2/3}}$: no $M_{\tilde{\chi}_1^0}$!

- Only the upper end-point is relevant.
- Background subtraction:
 - *τ˜*₁: Important SUSY background,but region above 45 GeV is signal free. Fit exponential and extrapolate.
 - *τ˜*₂: ~ no SUSY background above 45 GeV. Take background from SM-only simulation and fit exponential.
- Fit line to (data-background fit).

3

- Only the upper end-point is relevant.
- Background subtraction:
 - *τ˜*₁: Important SUSY
 background,but region
 above 45 GeV is signal free.
 Fit exponential and
 extrapolate.
 - [˜]₂: ~ no SUSY background above 45 GeV. Take background from SM-only simulation and fit exponential.
- Fit line to (data-background fit).

() < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < ()

- Only the upper end-point is relevant.
- Background subtraction:
 - *τ˜*₁: Important SUSY
 background,but region
 above 45 GeV is signal free.
 Fit exponential and
 extrapolate.
 - [˜]₂: ~ no SUSY background above 45 GeV. Take background from SM-only simulation and fit exponential.
- Fit line to (data-background fit).

3 > 4 3

- Only the upper end-point is relevant.
- Background subtraction:
 - *τ˜*₁: Important SUSY
 background,but region
 above 45 GeV is signal free.
 Fit exponential and
 extrapolate.
 - [˜]₂: ~ no SUSY background above 45 GeV. Take background from SM-only simulation and fit exponential.
- Fit line to (data-background fit).

- Only the upper end-point is relevant.
- Background subtraction:
 - $\tilde{\tau}_1$: Important SUSY

Results from end-point for $\tilde{\tau}_1$

3 GeV $M_{ ilde{ au}_1} = 107.73^{+0.03}_{-0.05} \text{GeV}/c^2 \oplus 1.3\Delta(M_{ ilde{\chi}^0_4})$. The error from $M_{ ilde{\chi}^0_1}$ largely

dominates

abarra AF C. W Results from end-point for $\tilde{\tau}_2$

 $M_{\tilde{\tau}_2} = 183^{+11}_{-5} \text{GeV}/c^2 \oplus 18\Delta(M_{\tilde{\chi}_2^0})$. The error from the endpoint largely dominates

SUSY

ΓΙΙ ΠΠΕ ΙΟ (Uala-Dackground) fit).

HILL L

< 口 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Fitting the $\tilde{\tau}$ mass

- Only the upper end-point is relevant.
- Background subtraction:
 - $\tilde{\tau}_1$: Important SUSY

Results from cross-section for $\tilde{\tau}_{\rm 1}$

$$\Delta(\mathit{N_{signal}})/\mathit{N_{signal}}=3.1\%
ightarrow \Delta(\mathit{M_{\widetilde{ au}}}_{1})=3.2 {
m GeV}/\mathit{c}^{2}$$

Results from cross-section for $\tilde{\tau}_2$

$$\Delta(N_{signal})/N_{signal} = 4.2\%
ightarrow \Delta(M_{ ilde{ au}_2}) = 3.6 ext{GeV}/c^2$$

End-point + Cross-section $ightarrow \Delta(M_{ ilde{ au}_1}^0) = 1.7 ext{GeV}/c^2$

• Fit line to (data-background fit).

Mikael Berggren (DESY)

800 8 GeV

Potential effects on the $\tilde{\tau}$ -channels:

- Decrease of P(e⁺): Less signal, more background for τ₁, and more signal, but still more background for τ₂
- Studied in BAW II: P(e⁺) would be 22 % for SB2009, compared to 30 % for the RDR:

- Error on :
 - End-point: 153 MeV instead of 144 MeV.
 - Cross-section: 3.31 % instead of 3.03 %.
- ullet pprox 10 % worse. More background, less signal.
- *τ˜*₂:
 Error on
 - End-point: 2.06 GeV instead of 2.02 GeV.
 - Cross-section: 4.77 % instead of 4.72 %.
 - \approx 2 % worse.Pure \mathcal{L}_{eff} effect

Potential effects on the $\tilde{\tau}$ -channels:

- Decrease of P(e⁺): Less signal, more background for τ₁, and more signal, but still more background for τ₂
- Studied in BAW II: P(e⁺) would be 22 % for SB2009, compared to 30 % for the RDR:
- Error on :
 - End-point: 153 MeV instead of 144 MeV.
 - Cross-section: 3.31 % instead of 3.03 %.
- \approx 10 % worse. More background, less signal.
- τ₂:
 Error on :
 - End-point: 2.06 GeV instead of 2.02 GeV.
 - Cross-section: 4.77 % instead of 4.72 %.
 - pprox 2 % worse.Pure \mathcal{L}_{eff} effect.

Potential effects on the $\tilde{\tau}$ -channels:

- Decrease of P(e⁺): Less signal, more background for τ₁, and more signal, but still more background for τ₂
- Studied in BAW II: P(e⁺) would be 22 % for SB2009, compared to 30 % for the RDR:

*τ*₂:

- Error on :
 - End-point: 153 MeV instead of 144 MeV.
 - Cross-section: 3.31 % instead of 3.03 %.
- $\bullet~\approx$ 10 % worse. More background, less signal.

```
• Error on :
```

End-point: 2.06 GeV instead of 2.02 GeV.

Cross-section: 4.77 % instead of 4.72 %.

• \approx 2 % worse.Pure \mathcal{L}_{eff} effect.

Potential effects on the $\tilde{\tau}$ -channels:

- Decrease of P(e⁺): Less signal, more background for τ₁, and more signal, but still more background for τ₂
- Studied in BAW II: P(e⁺) would be 22 % for SB2009, compared to 30 % for the RDR:
- Error on :
 - End-point: 153 MeV instead of 144 MeV.
 - Cross-section: 3.31 % instead of 3.03 %.
- \approx 10 % worse. More background, less signal.
- τ₂:
 - Error on :
 - End-point: 2.06 GeV instead of 2.02 GeV.
 - Cross-section: 4.77 % instead of 4.72 %.
 - \approx 2 % worse.Pure \mathcal{L}_{eff} effect.

3

Potential effects on the $\tilde{\tau}$ -channels:

- Decrease of P(e⁺): Less signal, more background for τ₁, and more signal, but still more background for τ₂
- Studied in BAW II: P(e⁺) would be 22 % for SB2009, compared to 30 % for the RDR:
- Error on :
 - End-point: 153 MeV instead of 144 MeV.
 - Cross-section: 3.31 % instead of 3.03 %.
- $\bullet~\approx$ 10 % worse. More background, less signal.
- τ₂:
 - Error on :
 - End-point: 2.06 GeV instead of 2.02 GeV.
 - Cross-section: 4.77 % instead of 4.72 %.
 - \approx 2 % worse.Pure \mathcal{L}_{eff} effect.

Polarisation and Near Degenerate ẽ

Super-symmetry associates scalars to chiral (anti)fermions

$$e^{-}_{L,R} \leftrightarrow \tilde{e}^{-}_{L,R} \quad \text{and} \quad e^{+}_{L,R} \leftrightarrow \tilde{e}^{+}_{R,L}.$$
(2)
$$e^{-}_{e^{+}} \qquad e^{-}_{\tilde{l},Z^{\circ}} \qquad e^{-}_{\tilde{e}^{+}_{L,R}} \qquad e^{-}_{e^{+}} \qquad e^{+}_{\tilde{k}^{\circ}_{R}} \qquad e^{+}_{\tilde{e}^{+}_{L,R}}$$

What if $M_{\tilde{e}_L} \approx M_{\tilde{e}_R}$, so that thresholds can't separate $e^+e^- \rightarrow \tilde{e}_L \tilde{e}_L$, $\tilde{e}_R \tilde{e}_R$ and $\tilde{e}_R \tilde{e}_L$?

Mikael Berggren (DESY)
Model: SPS1a' like, but:

 $M_{\tilde{e}_{\rm L}}$ = 200 GeV and $M_{\tilde{e}_{\rm R}}$ = 195 GeV. Both decay 100 % to $\tilde{\chi}_1^0$ e.

Even with $P_{e^-} \ge +90\%$, one can't disentangle the pairs $\tilde{e}_L^+ \tilde{e}_R^-$ and $\tilde{e}_R^+ \tilde{e}_R^-$ ': Ratio of the cross sections \approx constant.

Mikael Berggren (DESY)

Model: SPS1a' like, but:

 $M_{\tilde{e}_{\rm L}}$ = 200 GeV and $M_{\tilde{e}_{\rm R}}$ = 195 GeV. Both decay 100 % to $\tilde{\chi}_1^0$ e.

Even with $P_{e^-} \ge +90\%$, one can't disentangle the pairs $\tilde{e}_L^+ \tilde{e}_R^-$ and $\tilde{e}_R^+ \tilde{e}_R^-$ ': Ratio of the cross sections \approx constant.

Polarised positrons a must !

Mikael Berggren (DESY)

Background and efficiency from Full-sim SPS1a' sample, kinematics from Whizard simulation of the model.

- The ẽ signal was extracted from the same sample as was used for the τ̃ study, using the same cuts except
 - Demand exactly two well identified electrons.
 - Reverse the τ̃ anti-SUSY background cut
 - Some cuts could be loosened
- Almost background-free !

< ロ > < 同 > < 回 > < 回 >

Background and efficiency from Full-sim SPS1a' sample, kinematics from Whizard simulation of the model.

- The ẽ signal was extracted from the same sample as was used for the τ̃ study, using the same cuts except
 - Demand exactly two well identified electrons.
 - Reverse the τ̃ anti-SUSY background cut
 - Some cuts could be loosened
- Almost background-free !

A B b 4 B b

Background and efficiency from Full-sim SPS1a' sample, kinematics from Whizard simulation of the model.

- The ẽ signal was extracted from the same sample as was used for the τ̃ study, using the same cuts except
 - Demand exactly two well identified electrons.
 - Reverse the τ̃ anti-SUSY background cut
 - Some cuts could be loosened
- Almost background-free !

4 D b 4 A b

★ ∃ > < ∃ >

The handle: Opposite polarisation beams produces \tilde{e} :s in both s- and t-channel. Same polarisation produces \tilde{e} :s in t-channel only \Rightarrow

Modification of $\boldsymbol{\Theta}$ distribution with changed positron polarisation

However, the effect is small since t-channel always dominates ! \tilde{e} :s are heavy (and are scalars) \Rightarrow t- and s- channel kinematic distributions of the electrons are not very different. Need to reconstruct the \tilde{e} direction:

- 8 Unknown $\tilde{\chi}^0_1$ momentum components
- Assume $M_{ ilde{e}}$ and $M_{ ilde{x}_{ ilde{2}}}$ known ightarrow
- 8 constraints (E and p conservation, 4 mass-relations)

The handle: Opposite polarisation beams produces \tilde{e} :s in both s- and t-channel. Same polarisation produces \tilde{e} :s in t-channel only \Rightarrow

Modification of Θ distribution with changed positron polarisation

However, the effect is small since t-channel always dominates ! \tilde{e} :s are heavy (and are scalars) \Rightarrow t- and s- channel kinematic distributions of the electrons are not very different.

Need to reconstruct the *e* direction:

- 8 Unknown $\tilde{\chi}_1^0$ momentum components
- Assume $M_{ ilde{e}}$ and $M_{ ilde{x}_{ ilde{2}}}$ known ightarrow
- 8 constraints (E and p conservation, 4 mass-relations)

The handle: Opposite polarisation beams produces \tilde{e} :s in both s- and t-channel. Same polarisation produces \tilde{e} :s in t-channel only \Rightarrow

Modification of $\boldsymbol{\Theta}$ distribution with changed positron polarisation

However, the effect is small since t-channel always dominates ! \tilde{e} :s are heavy (and are scalars) \Rightarrow t- and s- channel kinematic distributions of the electrons are not very different. Need to reconstruct the \tilde{e} direction:

- 8 Unknown $\tilde{\chi}^0_1$ momentum components
- Assume $M_{ ilde{e}}$ and $M_{ ilde{\chi}^0_4}$ known ightarrow
- 8 constraints (E and p conservation, 4 mass-relations)

Analyse assuming 100 fb^{-1} for each of the polarisations configurations.

★ ∃ > < ∃ >

< < >>

 $\Theta_{\rm sel}$

0.5

Polarisation and Near Degenerate ẽ

Analyse assuming 100 fb^{-1} for each of the polarisations configurations.

2.5

 $\overset{3}{\Theta}_{se^1}$

2

1.5

< <p>A < </p>

Analyse assuming 100 fb^{-1} for each of the polarisations configurations.

< < >>

 $\Theta_{\rm sel}$

Analyse assuming 100 fb^{-1} for each of the polarisations configurations.

3 > 4 3

Analyse assuming 100 fb^{-1} for each of the polarisations configurations.

0.025 • For $P(e^-) = + 80 \% P(e^+) = 0$ பிட்ட (180.60) |P(e⁺)| significance Title of shift(σ) (%) of paper "Limit on ..." 22 2.4 30 3.5 "Evidence for ..." 60 6.6 "Observation of ..."

★ ∃ > < ∃ >

Search for WIMPS and polarisation

(See arXiv:1206.6639)

WIMP Dark Matter

- Masses of 0.1–1 TeV.
- In thermal equilibrium with SM soup after inflation.
- Weak interactions naturally give observed relic density.
- In SUSY with conserved R-Parity: LSP: $\tilde{\chi}_1^0$ or \tilde{G} .
- Here: no model assumptions.

RDR, SB2009 and WIMPS Birkedal *et al.* [hep-ph/0403004]

Model independence

- Assume only one DM candidate, no co-annihilation.
- Constrain WIMP pair annihilation XSec from observation.
- Crossing Symmetry (annihilation \Rightarrow production).
- ISR.

A B b 4 B b

Model Independent Production Cross Section

Parameters:

- $\kappa_e(P_e, P_p)$: Helicity dependent annihilation fraction to e^+e^- .
- S_{χ} : Spin, scale factor.
- M_{χ} , $J_0 \rightarrow$ shape, J_0 dominant partial wave.

Model Independent Production Cross Section

Signal shape at threshold provides information on partial wave (s- or p-wave).

Parameters:

- $\kappa_e(P_e, P_p)$: Helicity dependent annihilation fraction to e^+e^- .
- S_{χ} : Spin, scale factor.
- M_{χ} , $J_0 \rightarrow$ shape, J_0 dominant partial wave.

Mass Determination, $P_{e^-} = 0\% P_{e^+} = 0\%$

 $\sigma_{LR} = \sigma_{RL}; \, \sigma_{RR} = \sigma_{LL} = 0$

 Δ*M*/*M* from ~ 2.5% at *M* = 120 to 0.5% at *M* = 220.

Search for WIMPS and polarisation

Mass Determination, $P_{e^-} = 80\% P_{e^+} = 0\%$

• Increased resolution Factor $\sim 2/3$

Mass Determination, $P_{e^-} = 80\% P_{e^+} = -30\%$

 $\sigma_{LR} = \sigma_{RL}; \sigma_{RR} = \sigma_{LL} = 0$

 Additional resolution increase by 3/4.

A B F A B F

Conclusions

Also when full simulation of both detector and beams:

• The \mathcal{L}_{eff} effect is seen in $\tilde{\tau}$ and WIMP:s

- Strongly in in $\tilde{\tau}_1$ and WIMPS : signal and background have opposite P dependence.
- But also in $\tilde{\tau}_2$, even though they have the same.

• The polarisation measurement using WW was shown to

- More powerful than the Blondel scheme.
- Profit strongly from positron polarisation.
- The preliminary determination of the chiral structure of near-degenerate ess
 - Cannot be done without positron polarisation
 - Profits largely even from a modest increase (22 % to 30 % doubling the luminosity)

Conclusions

Also when full simulation of both detector and beams:

• The \mathcal{L}_{eff} effect is seen in $\tilde{\tau}$ and WIMP:s

- Strongly in in $\tilde{\tau}_1$ and WIMPS : signal and background have opposite P dependence.
- But also in τ
 ₂, even though they have the same.
- The polarisation measurement using WW was shown to
 - More powerful than the Blondel scheme.
 - Profit strongly from positron polarisation.
- The preliminary determination of the chiral structure of near-degenerate ess
 - Cannot be done without positron polarisation
 - Profits largely even from a modest increase (22 % to 30 % doubling the luminosity)

Conclusions

Also when full simulation of both detector and beams:

• The \mathcal{L}_{eff} effect is seen in $\tilde{\tau}$ and WIMP:s

- Strongly in in $\tilde{\tau}_1$ and WIMPS : signal and background have opposite P dependence.
- But also in $\tilde{\tau}_2$, even though they have the same.
- The polarisation measurement using WW was shown to
 - More powerful than the Blondel scheme.
 - Profit strongly from positron polarisation.
- The preliminary determination of the chiral structure of near-degenerate ess
 - Cannot be done without positron polarisation
 - Profits largely even from a modest increase (22 % to 30 % doubling the luminosity)

イロト イ理ト イヨト イヨト

Conclusions

Also when full simulation of both detector and beams:

• The \mathcal{L}_{eff} effect is seen in $\tilde{\tau}$ and WIMP:s

- Strongly in in $\tilde{\tau}_1$ and WIMPS : signal and background have opposite P dependence.
- But also in $\tilde{\tau}_2$, even though they have the same.
- The polarisation measurement using WW was shown to
 - More powerful than the Blondel scheme.
 - Profit strongly from positron polarisation.
- The preliminary determination of the chiral structure of near-degenerate ess
 - Cannot be done without positron polarisation
 - Profits largely even from a modest increase (22 % to 30 % doubling the luminosity)

Conclusions

Also when full simulation of both detector and beams:

• The \mathcal{L}_{eff} effect is seen in $\tilde{\tau}$ and WIMP:s

- Strongly in in $\tilde{\tau}_1$ and WIMPS : signal and background have opposite P dependence.
- But also in $\tilde{\tau}_2$, even though they have the same.

Higher positron polarisation enhances the physics potential of the ILC

 Profits largely even from a modest increase (22 % to 30 % doubling the luminosity)