

LHeC Sources

L. Rinolfi CERN

Thanks to:

I. Bailey, H. Braun, O. Brüning, E. Bulyak, R. Chehab, O. Dadoun, P. Gladkikh, M. Klein, T. Omori, P. Sievers, D. Schulte, A. Variola, A. Vivoli, V. Yakimenko, F. Zimmermann

Performance targets

* e⁻ energy ≥60 GeV

- * luminosity ~10³³ cm⁻²s⁻¹
- * total electrical power for e^- : $\leq 100 \text{ MW}$
- * e⁺p collisions with similar luminosity
- * simultaneous with LHC pp physics
- * e⁻/e⁺ polarization

LHeC design parameters

options	RR	LR	LR*
e- energy at IP[GeV]	60	60	140
<i>ep</i> luminosity [10 ³² cm ⁻² s ⁻¹]	8	10	0.4
<i>eN</i> luminosity [10 ³² cm ⁻² s ⁻¹]	0.45	1	0.04
polarization for e^- (e^+) [%]	40 (40)	90 (0)	90 (0)
bunch population [10 ⁹]	20	2 (or 1.0)	0.8
e- bunch length [mm]	6	0.3	0.3
bunch interval [ns]	25	50 (or 25)	25
transv. emit. γε _{x,y} [mm]	0.59, 0.29	0.05	0.1
rms IP beam size σ _{x,y} [μm]	45, 22	7	7
e- IP beta funct. $\beta_{x,y}^{*}$ [m]	0.4, 0.2	0.12	0.14
full crossing angle [mrad]	0.93	0	0
repetition rate [Hz]	N/A	N/A	10
beam pulse length [ms]	N/A	N/A	5
ER efficiency	N/A	94%	N/A
average current [mA]	100	6.4	5.4
tot. wall plug power[MW]	100	100	100

RR= Ring – Ring **LR** =Linac –Ring

*) pulsed

LHeo

LHeC-RL (60 GeV-ERL) beam structure at IP for e⁻ and e⁺

Number of bunches per second

 $1 / 50 \times 10^{-9} \text{ s} = 20 \times 10^{6} \text{ b/s}$

 $20x10^{6}$ b/s x $0.33x10^{-9}$ C/b = 6.6 mA

Study 3 cases

- 1)Polarized e⁻
- 2) Unpolarized e^+
- 3) Polarized e^+

Electron injector for ERL

Flux of e⁺

	SLC	CLIC	ILC	LHeC	LHeC
		(3 TeV)	(RDR)	p-140	ERL
Energy	1.19 GeV	2.86 GeV	5 GeV	140 GeV	60 GeV
e ⁺ / bunch at IP	40 x 10 ⁹	3.72x10 ⁹	20 x 10 ⁹	1.6x10 ⁹	2 x 10 ⁹
e ⁺ / bunch after capture	50 x 10 ⁹	7.6x10 ⁹	30 x 10 ⁹	1.8 x 10 ⁹	2.2 x 10 ⁹
Bunches / macropulse	1	312	2625	10 ⁵	NA
Macropulse repet. rate	120	50	5	10	CW
Bunches / second	120	15600	13125	10 ⁶	20x10 ⁶
e ⁺ / second (x 10 ¹⁴)	0.06	1.1	3.9	18	440
		x 20		x 300	x 7000

LHeC-LR beam structure for p-140 GeV

Concept of 2 parallel target stations

A possibility for unpolarized e⁺ at LHeC

ĹH

Issues for e⁺ targets

Concept Hybrid targets:

R. Chehab, V. Strakhovenko, A. Variola

For each e⁺ target:

- Peak Energy Deposition Density (PEDD) is maybe ok (?) < expected breakdown limit of 35 J/g
- Relaxation time in the target (shock wave) is maybe ok (?) below the expected limit of 10 μ s
- Total beam power deposition is probably an issue (5.6 kW / target)

=> All these issues needs experimental tests

Another possibility for e⁺ target

Densely packed W spheres

Rotating rim = 20 m/s

Rep. rate = 1000 rpm

Two methods to produce polarized e⁺

ĹH

Investigations to produce polarized e⁺ (He)

p – 140 GeV

- 1) Compton Linac
- 2) Several Compton Rings

- 1) Undulator using spent beam
- 2) Compton Linac
- 3) Compton Ring

Three rings transformer for e⁺ source option

See E. Bulyak and

P. Gladkikh talks

extraction ring (N turns)

fast cooling ring (N turns)

accumulator ring (N turns)

E. Bulyak "Performance of Compton Sources of Polarised Positrons" at Positron for LHeC - Brainstorming workshop - May 2011 (Ref slide 18)

Summary

Ring-Ring option

e⁻ and e⁺ injectors:

- 1) No need of polarized beams (polarization obtained in the ring)
- 2) Former and existing machines have already demonstrated the requested performance
- 3) Detailed design would improve the results.

Linac-Ring option

Polarized e⁻ beam injector

The injector, with expected performance, is feasible but requires an important R&D.

Unpolarized e⁺ beam injector

A preliminary design has been proposed (for p-140 GeV). It is challenging, needs further studies and requires a strong R&D.

Polarized e⁺ beam injector

The design is extremely demanding and requires more studies and investigations with a very strong R&D.

Some references for the LHeC sources

3rd CERN-ECFA-NuPecc workshop on the LHeC - November 2010 http://indico.cern.ch/conferenceDisplay.py?confId=105142

Positron for LHeC - Brainstorming workshop - May 2011 http://indico.cern.ch/conferenceDisplay.py?confId=140044

CERN-ECFA-NuPecc workshop on the LHeC - June 2012 http://indico.cern.ch/conferenceDisplay.py?confId=183282

CDR for the LHeC published

CERN-OPEN-2012-015 LHeC-Note-2012-001 GEN Geneva, June 14, 2012

A Large Hadron Electron Collider at CERN

Report on the Physics and Design Concepts for Machine and Detector

LHeC Study Group

Submitted to J.Phys. G

LHeC CDR completed (~630 pages)

About 150 Experimentalists and Theorists from 50 Institutes

LHeC Study Group

J.L.Abelleira Fernandez^{16,23}, C.Adolphsen⁵⁷, A.N.Akay⁰³, H.Aksakal³⁹, J.L.Albacete⁵², S.Alekhin^{17,54} P.Allport²⁴, V.Andreev³⁴, R.B.Appleby^{14,30}, E.Arikan³⁹, N.Armesto^{53,a}, G.Azuelos^{33,64}, M.Bai³⁷, D.Barber^{14,17,24}, J.Bartels¹⁸, O.Behnke¹⁷, J.Behr¹⁷, A.S.Belyaev^{15,56}, I.Ben-Zvi³⁷, N.Bernard²⁵, S.Bertolucci¹⁶, S.Bettoni¹⁶, S.Biswal⁴¹, J.Blümlein¹⁷, H.Böttcher¹⁷, A.Bogacz³⁶ C.Bracco¹⁶, G.Brandt⁴⁴, H.Braun⁶⁵, S.Brodsky^{57,b}, O.Brüning¹⁶, E.Bulyak¹², A.Buniatyan¹⁷, H.Burkhardt¹⁶, I.T.Cakir⁰², O.Cakir⁰¹, R.Calaga¹⁶, V.Cetinkaya⁰¹, E.Ciapala¹⁶, R.Ciftci⁰¹ A.K.Ciftci⁰¹, B.A.Cole³⁸, J.C.Collins⁴⁸, O.Dadoun⁴², J.Dainton²⁴, A.De.Roeck¹⁶, D.d'Enterria¹⁶ A.Dudarev¹⁶, A.Eide⁶⁰, R.Enberg⁶³, E.Eroglu⁶², K.J.Eskola²¹, L.Favart⁰⁸, M.Fitterer¹⁶ S.Forte³², A.Gaddi¹⁶, P.Gambino⁵⁹, H.García Morales¹⁶, T.Gehrmann⁶⁹, P.Gladkikh¹², C.Glasman²⁸, R.Godbole³⁵, B.Goddard¹⁶, T.Greenshaw²⁴, A.Guffanti¹³, V.Guzey^{19,36}, C.Gwenlan⁴⁴, T.Han⁵⁰, Y.Hao³⁷, F.Haug¹⁶, W.Herr¹⁶, A.Hervé²⁷, B.J.Holzer¹⁶, M.Ishitsuka⁵⁸, M.Jacquet⁴², B.Jeanneret¹⁶, J.M.Jimenez¹⁶, J.M.Jowett¹⁶, H.Jung¹⁷, H.Karadeniz⁰², D.Kayran³⁷, A.Kilic⁶², K.Kimura⁵⁸ M.Klein²⁴, U.Klein²⁴, T.Kluge²⁴, F.Kocak⁶², M.Korostelev²⁴, A.Kosmicki¹⁶, P.Kostka¹⁷ H.Kowalski¹⁷, G.Kramer¹⁸, D.Kuchler¹⁶, M.Kuze⁵⁸, T.Lappi^{21,c}, P.Laycock²⁴, E.Levichev⁴⁰, S.Levonian¹⁷, V.N.Litvinenko³⁷, A.Lombardi¹⁶, J.Maeda⁵⁸, C.Marquet¹⁶, B.Mellado²⁷, K.H.Mess¹⁶ A.Milanese¹⁶, S.Moch¹⁷, I.I.Morozov⁴⁰, Y.Muttoni¹⁶, S.Myers¹⁶, S.Nandi⁵⁵, Z.Nergiz³⁹ P.R.Newman⁰⁶, T.Omori⁶¹, J.Osborne¹⁶, E.Paoloni⁴⁹, Y.Papaphilippou¹⁶, C.Pascaud⁴², H.Paukkunen⁵³, E.Perez¹⁶, T.Pieloni²³, E.Pilicer⁶², B.Pire⁴⁵, R.Placakyte¹⁷, A.Polini⁰⁷ V.Ptitsyn³⁷, Y.Pupkov⁴⁰, V.Radescu¹⁷, S.Raychaudhuri³⁵, L.Rinolfi¹⁶, R.Rohini³⁵, J.Rojo^{16,31} S.Russenschuck¹⁶, M.Sahin⁰³, C.A.Salgado^{53,a}, K.Sampei⁵⁸, R.Sassot⁰⁹, E.Sauvan⁰⁴, U.Schneekloth¹⁷, T.Schörner-Sadenius¹⁷, D.Schulte¹⁶, A.Senol²², A.Seryi⁴⁴, P.Sievers¹⁶, A.N.Skrinsky⁴⁰, W.Smith²⁷ H.Spiesberger²⁹, A.M.Stasto^{48,d}, M.Strikman⁴⁸, M.Sullivan⁵⁷, S.Sultansoy^{03,e}, Y.P.Sun⁵⁷ B.Surrow¹¹, L.Szymanowski^{66,f}, P.Taels⁰⁵, I.Tapan⁶², T.Tasci²², E.Tassi¹⁰, H.Ten.Kate¹⁶, J.Terron²⁸, H.Thiesen¹⁶, L.Thompson^{14,30}, K.Tokushuku⁶¹, R.Tomás García¹⁶, D.Tommasini¹⁶ D.Trbojevic³⁷, N.Tsoupas³⁷, J.Tuckmantel¹⁶, S.Turkoz⁰¹, T.N.Trinh⁴⁷, K.Tywoniuk²⁶, G.Unel²⁰ J.Urakawa⁶¹, P.VanMechelen⁰⁵, A.Variola⁵², R.Veness¹⁶, A.Vivoli¹⁶, P.Vobly⁴⁰, J.Wagner⁶⁶ R.Wallny⁶⁸, S.Wallon^{43,46,f}, G.Watt¹⁶, C.Weiss³⁶, U.A.Wiedemann¹⁶, U.Wienands⁵⁷, F.Willeke³⁷, B.-W.Xiao⁴⁸, V.Yakimenko³⁷, A.F.Zarnecki⁶⁷, Z.Zhang⁴², F.Zimmermann¹⁶, R.Zlebcik⁵¹ F.Zomer⁴²

SPARES

e⁻ source parameters

|--|

Parameters	LHeC
	60 GeV "erl"
Electrons/bunch (N _{e-})	2.2x10 ⁹ (*)
Charge / bunch (q _e)	0.35 nC
Number of bunches / s (n _b)	20 x10 ⁶
Width of bunch (t _p)	10 - 100 ps (**)
Time between bunches (Δt_b)	50 ns
Pulse repetition rate	CW
Average current	6.6 mA
Peak current of bunch (I peak)	3.5 - 350 A
Current density (1 cm radius)	1.1 - 110 A/cm ²
Polarization	> 90%

(*) Assumed 90% efficiency

(**) Microbunch width $(t_p)_{LHeC}$ between 10 and 100 ps (depends on the photocathode and laser)

cw laser parameters for LHeC e⁻ source

$$E_{L} = \frac{hc}{q} \frac{Q}{\lambda \times QE} \qquad \qquad E_{L}(J) = 1.24 \times 10^{-6} \frac{Q(nC)}{\lambda (nm) \times QE}$$

 $\lambda\thickapprox 775$ - 780 nm for GaAs photocathodes

QE ≈ 0.2 %

Parameters	Units	LHeC 60 GeV
Laser energy on photocathode (E_L) per pulse	J	0.28 x10 ⁻⁶
Peak power ($P_p = E_L / t_b$)	W	2.8 - 280 kW
Average power ($P_a = E_L \times f_{las}$)	W	5.6 W

Expected performance for the LHeC e⁻ source

Parameters	Units	LHeC
Gun high voltage	kV	140
Initial charge at the gun	nC	0.35
Initial bunch length at the cathode	ps	10 - 100
Injector energy	MeV	500
Bunch length after the Bunch Compressor	ps	1
Energy spread	%	< 1
Normalized rms emittance	mm.mrad	< 50
Polarization	%	> 90

Production of ultra-short pulse beam with high charge (< 10 ps, @1 nC/bunch) and low emittance (< 1 π .mm.mrad, @1 nC/bunch) is not yet obtained but achievable

R&D issues for the LHeC polarized source

- Operation with high average current (7 mA)
- Very good vacuum required for good lifetime
- Emittance growth due to space charge
- Space charge limit and Surface charge limit
- Field emission issue with very high voltage (>> 100kV)
- Laser performance issue
- Cathode/anode design for 100% transport
- Higher QE (Quantum Efficiency)

R&D is required in order to get the expected performance

Polarized Positrons from Compton Linac [H.]

V. Yakimenko

Polarized γ -ray beam is generated in the Compton back scattering inside optical cavity of CO2 laser beam and 6 GeV e-beam produced by linac.

Simple estimations for Compton Linac LHe

- $N_{\gamma} / N_{e-} = 1$ (demonstrated at BNL)
- N_{e^+} / N_{γ} = 0.02 (expected)
- i.e. ≈ 50 gammas to generate 1 e⁺

Data for LHeC:

- $N_{e+}=2.2 \ x \ 10^9$ / bunch ~ 0.35 nC
- $N_{e-} = 0.11 \text{ x } 10^{12} \text{ / bunch} \sim 18 \text{ nC}$

Therefore with 1.8 nC / e^- bunch and 10 Compton IP's => 0.35 nC / e^+ bunch

BUT many issues:

Laser cavities need strong R&D, emittances, huge power on the target, liquid targets ?, etc, ...

Shock wave tests on BN window

- KEKB-HER: 8GeV, 10nC (Max), 1600 bunches (1600mA)
- The beam is deflected by the abort kicker as shown when it is dumped.

Experiment performed at KEKB

Total Energy of the Beam 8 GeV, 5 nC/bunch (= 800 mA), 1600 bunches --> 64 kJ

Energy deposit of the target (~12 % of Energy of the beam) ~ 7.7 kJ

Target Destruction

Plan of New Experiment

- 1. We will use material (metal) which melting point is higher than that of lead.
- 2. We consider several metals. Ti, Fe, Cu, W

Draft LHeC time schedule

Year	2012	2013	2014	2015	2016	2017	2018	2019	2020	2021	2022	2023	2024
	TDR												
	RF Pri devel	ototype opmeni	t										
				RF Pro	duction	& Tes	t stand	operat	tion				
			Magne series	t pre-									
					Magn	et Proc	luction	& test	ing				
				Legal prepar	ation								
						Civil e	nginee	ring					
									Infras	truc.			
										Instal	ation		
												Opera	tion

-Only 2 long shutdowns planned before 2022

-Only 10 years for the LHeC from CDR to project start.

O. Brüning, ECFA meeting, 25 November 2011

POSIPOL 2012 Berlin

4th September 2012

LS3 --- HL LHC