





> CLIC status, CDR published

- > Recent research highlights
- > Future program
- > Main beam injectors overview

Many slides from S. Stapnes, D. Schulte, R. Corsini

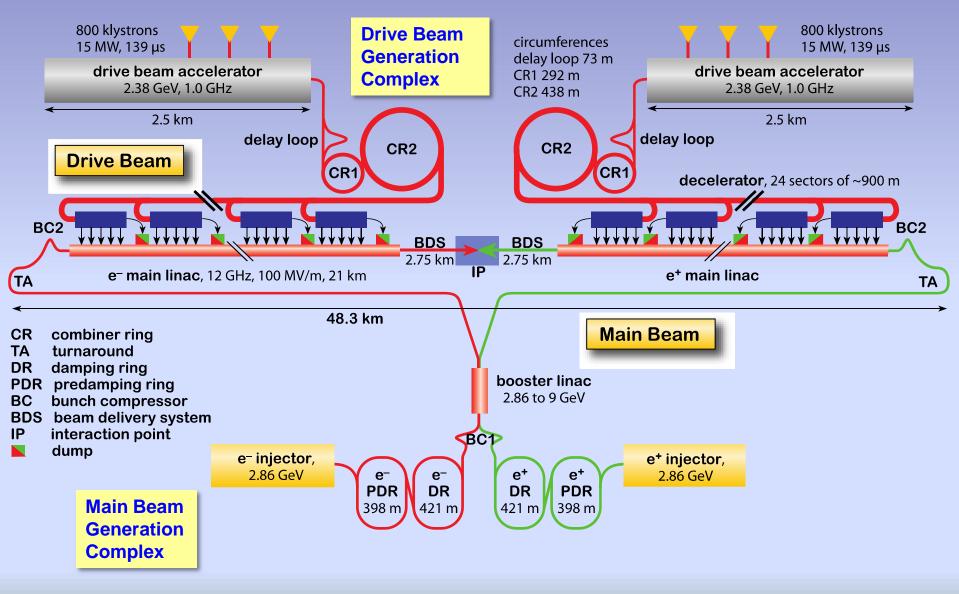


### Current CLIC&CTF3 Collaboration



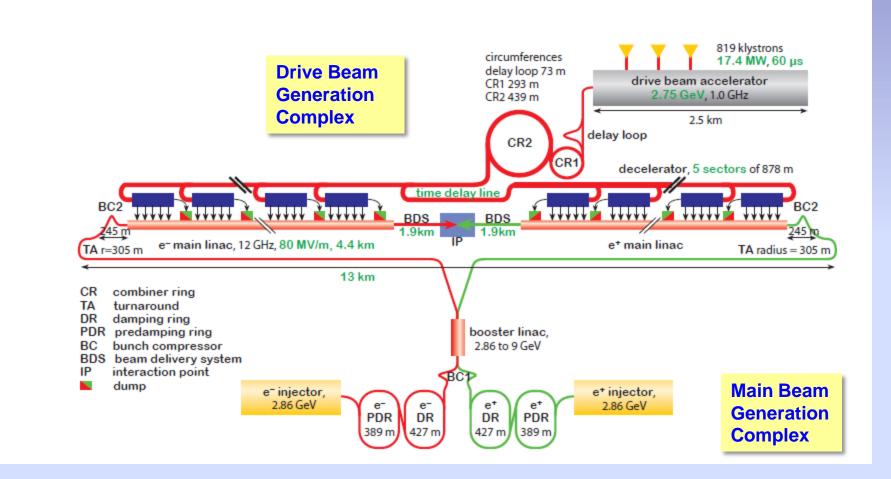
#### CLIC multi-lateral collaboration - 44 Institutes from 22 countries




ACAS (Australia) Aarhus University (Denmark) Ankara University (Turkey) Argonne National Laboratory (USA) Athens University (Greece) BINP (Russia) CERN CIEMAT (Spain) Cockcroft Institute (UK) ETH Zurich (Switzerland) FNAL (USA) Gazi Universities (Turkey) Helsinki Institute of Physics (Finland) IAP (Russia) IAP NASU (Ukraine) IHEP (China) INFN / LNF (Italy) Instituto de Fisica Corpuscular (Spain) IRFU / Saclay (France) Jefferson Lab (USA) John Adams Institute/Oxford (UK) Joint Institute for Power and Nuclear Research SOSNY /Minsk (Belarus) John Adams Institute/RHUL (UK) JINR (Russia) Karlsruhe University (Germany) KEK (Japan) LAL / Orsay (France) LAPP / ESIA (France) NIKHEF/Amsterdam (Netherland) NCP (Pakistan) North-West. Univ. Illinois (USA) Patras University (Greece) Polytech. Univ. of Catalonia (Spain)

PSI (Switzerland) RAL (UK) RRCAT / Indore (India) SLAC (USA) Sincrotrone Trieste/ELETTRA (Italy) Thrace University (Greece) Tsinghua University (China) University of Oslo (Norway) University of Vigo (Spain) Uppsala University (Sweden) UCSC SCIPP (USA)




### CLIC Layout at 3 TeV







### CLIC Layout at 500 GeV






### **CLIC Main Parameters**

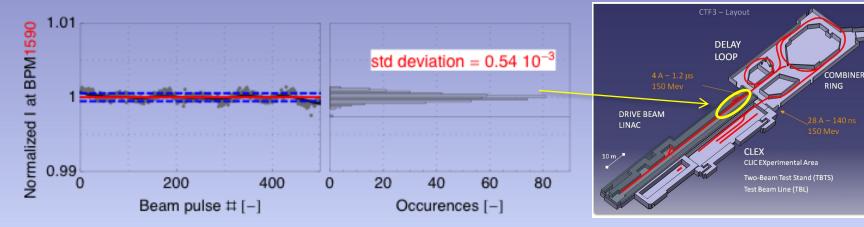


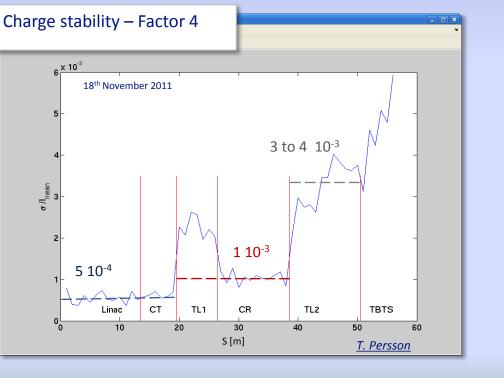
| parameter                | symbol                                                            |          |        |
|--------------------------|-------------------------------------------------------------------|----------|--------|
| centre of mass energy    | E <sub>cm</sub> [GeV]                                             | 500      | 3000   |
| luminosity               | ${\cal L}~[10^{34}~{ m cm^{-2}s^{-1}}]$                           | 2.3      | 5.9    |
| luminosity in peak       | $\mathcal{L}_{0.01} \; [10^{34} \; \text{cm}^{-2} \text{s}^{-1}]$ | 1.4      | 2      |
| gradient                 | G [MV/m]                                                          | 80       | 100    |
| site length              | [km]                                                              | 13       | 48.3   |
| charge per bunch         | N [10 <sup>9</sup> ]                                              | 6.8      | 3.72   |
| bunch length             | $\sigma_{\sf z} \left[ \mu {\sf m}  ight]$                        | 72       | 44     |
| IP beam size             | $\sigma_{\sf x}/\sigma_{\sf y} \;[{\sf nm}]$                      | 200/2.26 | 40/1   |
| norm. emittance          | $\epsilon_{\rm x}/\epsilon_{\rm y} \ [{\rm nm}]$                  | 2400/25  | 660/20 |
| bunches per pulse        | n <sub>b</sub>                                                    | 354      | 312    |
| distance between bunches | Δ <sub>b</sub> [ns]                                               | 0.5      | 0.5    |
| repetition rate          | f <sub>r</sub> [Hz]                                               | 50       | 50     |
| est. power cons.         | $P_{wall}\left[MW\right]$                                         | 271      | 582    |








- CLIC concept with exploration over multi-TeV energy range up to 3 TeV
- Feasibility study of CLIC parameters optimized at 3 TeV (most demanding)
- Consider also 500 GeV, and intermediate energy range
- presented in the SPC In March 2012 (by Daniel Schulte)


http://project-clic-cdr.web.cern.ch/project-CLIC-CDR/



## **CTF3** Stability







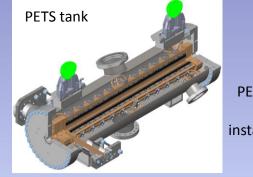
Repeatability and long term current stability improved

Pulse charge stability measured at end of the linac better than CLIC requirements

Several feed-back loops operational, for temperature, RF phase and power and gun current.



### CTF3 Test Beam Line (TBL)




Thirteen PETS tanks installed and commissioned until now

Full beam transport to end-of-line spectrometer, stable beam

Power produced (70 MW/PETS) fully consistent with drive beam current (21 A) and measured deceleration. Total power produced: 630 MW (9 PETS)






PETS tank during installation



Beam deceleration,

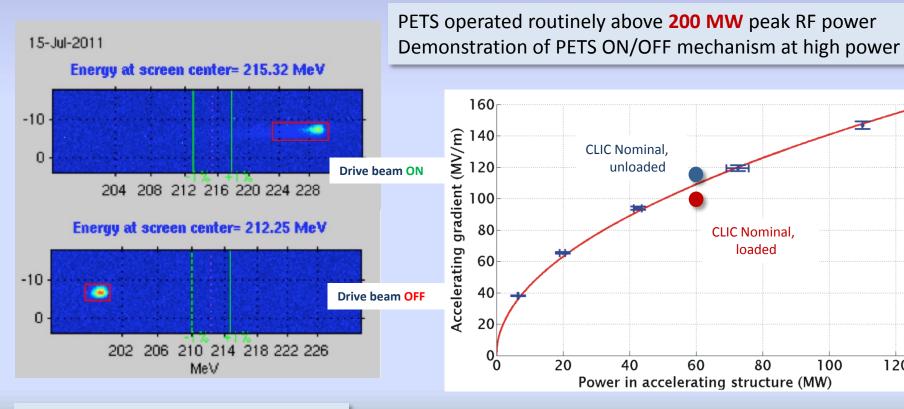
measured in spectrometer and compared with expectations



S. Doebert, R. Lillenstol

# TBTS – Two-beam acceleration



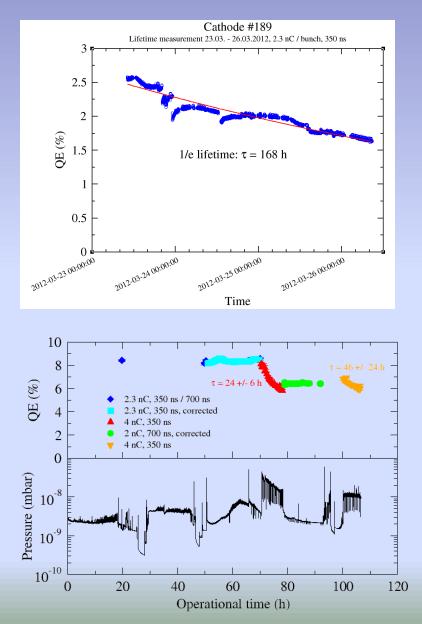

120

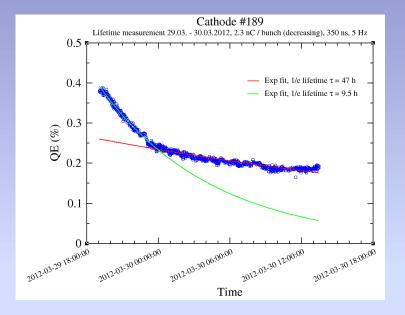
Two-Beam Acceleration demonstration in TBTS

Up to **145 MV/m** measured gradient

Good agreement with expectations (power vs. gradient)







Demonstration of PETS of-off mechanism

### PHIN run in March



March 2012: Lifetime studies of Cs<sub>3</sub>Sb cathodes with green light, about 2 weeks





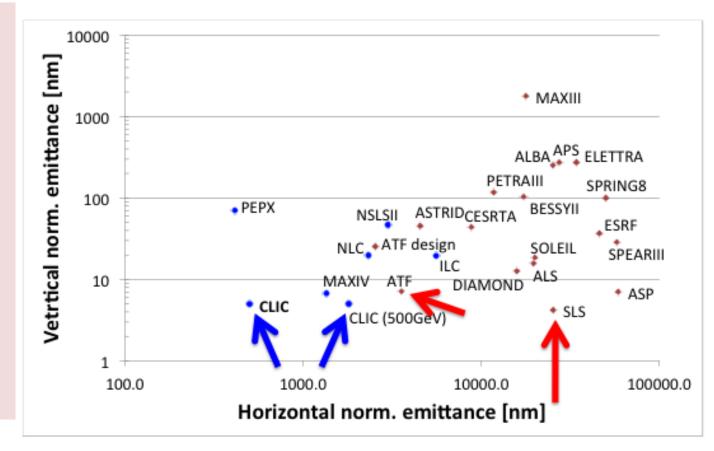
- Correlation between lifetime and vacuum.
- In high 10<sup>-9</sup> mbar/ low 10<sup>-8</sup> mbar
   < 50h lifetime was measured.</li>
- When vacuum is kept at low 10<sup>-9</sup> mbar lifetime is within specification.

C. Hessler, E. Chevallay, M. Csatari, S. Doebert, V. Fedosseev



## Achieved Gradient




| Structure<br>name          | Unloaded<br>gradient | Flat top<br>pulse length | Breakdown<br>rate    | Conditioning<br>hours | Expected gradient for a<br>trip rate of 3×10 <sup>-7</sup><br>and 180 ns flat top |
|----------------------------|----------------------|--------------------------|----------------------|-----------------------|-----------------------------------------------------------------------------------|
|                            | [MV/m]               | [ns]                     | [1/puls              | se/metre]             | [MV/m]                                                                            |
| T18 #1 SLAC                | 105                  | 230                      | $1.0 \times 10^{-6}$ | 1400                  | 105                                                                               |
| T18 #1 SLAC                | 106                  | 230                      | $3.1 \times 10^{-7}$ | 1200                  | 110                                                                               |
| T18 #2 KEK                 | 105                  | 252                      | $1.0 \times 10^{-6}$ | 3900                  | 107                                                                               |
| T18 #3 SLAC                | 110                  | 230                      | $7.7 \times 10^{-5}$ | 288                   | 95                                                                                |
| T18 #5 CERN/SLAC           | 90                   | 230                      | $1.3 \times 10^{-6}$ | 560                   | 89                                                                                |
| TD18 #1 SLAC               | 100                  | 230                      | $7.6 \times 10^{-5}$ | 1300                  | 87                                                                                |
| TD18 #2 KEK                | 102                  | 252                      | $1.4 \times 10^{-5}$ | 2500                  | 95                                                                                |
| T24 #4 SLAC                | 98                   | 230                      | $7.4 \times 10^{-5}$ | 650                   | 85                                                                                |
| T24 #3 KEK                 | 120                  | 252                      | $1.6 \times 10^{-6}$ | 1700                  | 120                                                                               |
| TD24 #3 KEK<br>12 GHz TBTS | 100                  | 160                      | $< 10^{-7}$          | ongoing               | 103                                                                               |



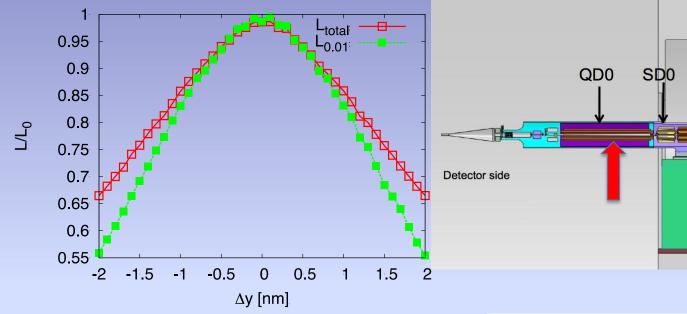
### **Emittance Generation**

Many design issues addressed

- lattice design
- dynamic aperture
- tolerances
- intra-beam
- scattering
- space charge
- wigglers
- RF system
- vacuum
- electron cloud
- kickers



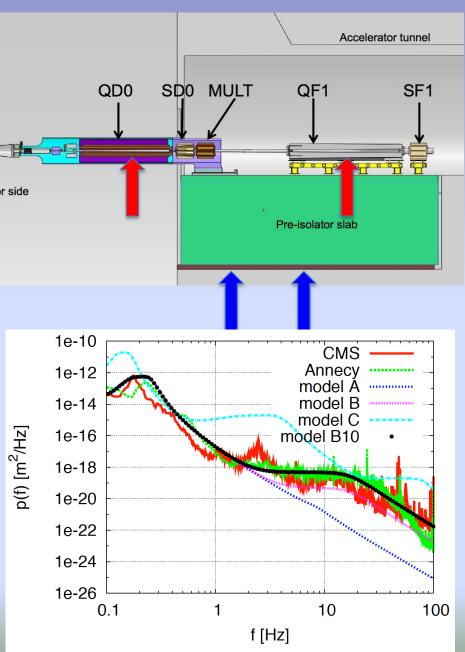
CLIC @3 TeV would achieve 1/3 of luminosity with ATF performance (3800nm/15nm@4e9)




Damping ring design is consistent with target performance

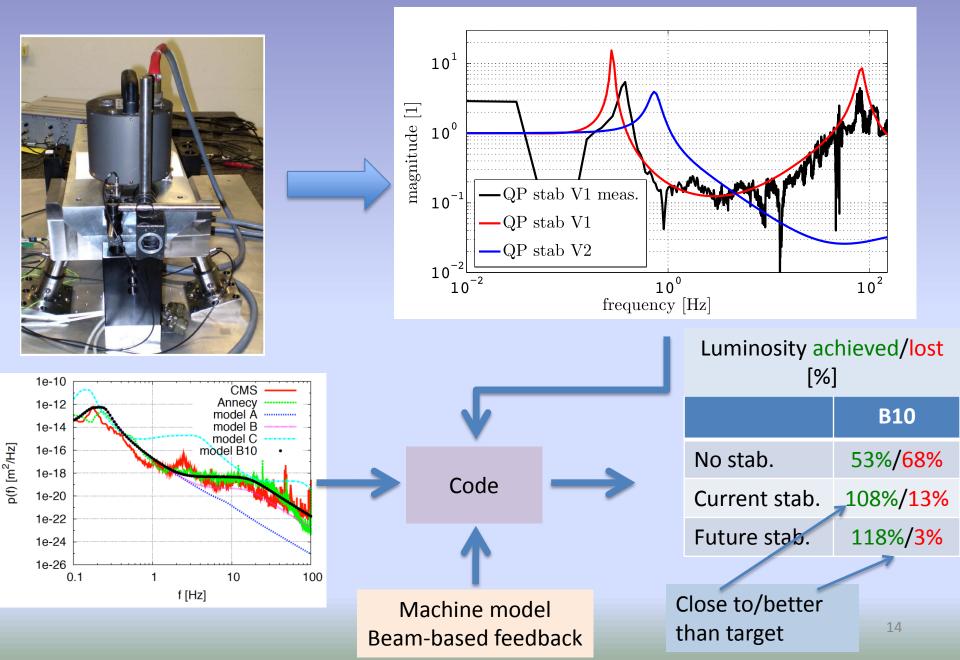


## Ground Motion and Its Mitigation






Natural ground motion can impact the luminosity


• typical quadrupole jitter tolerance O(1nm) in main linac and O(0.1nm) in final doublet

-> develop stabilization for beam guiding magnets





### **Active Stabilization Results**





### The CLIC CDR finally published Vol 2: Physics and detectors at CLIC (L.Linssen)



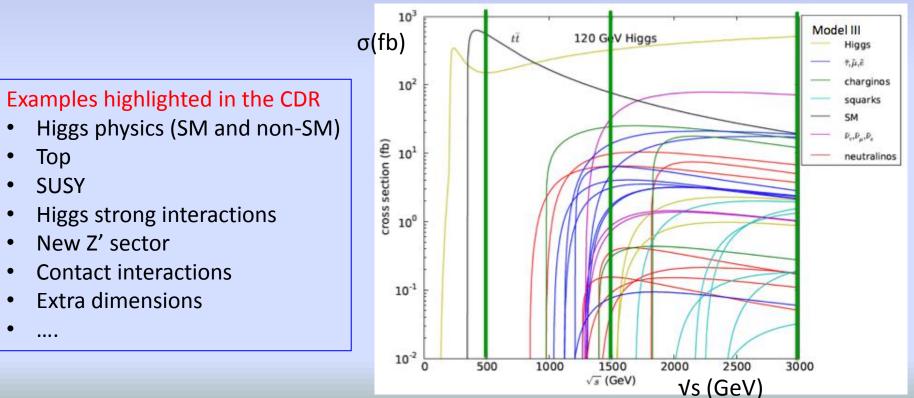
- Physics at a multi-TeV CLIC machine can be measured with high precision, despite challenging background conditions

- External review procedure in October 2011
- Completed and ready for print end 2011, presented in SPC in December 2011
   ( by Lucie Linssen)

http://cdsweb.cern.ch/record/1425915/



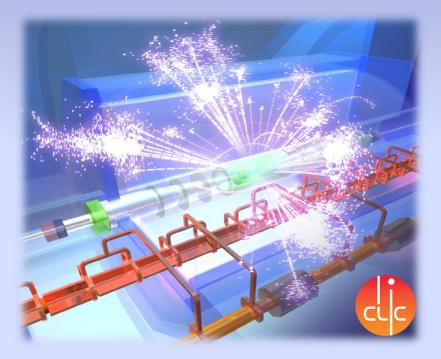
## **CLIC** physics potential




#### CLIC physics potential is complementary to LHC

See CDR Volume 2

Beyond LHC discovery reach:


- e+e- collisions give access to additional physics processes
  - weakly interacting states (e.g. slepton, chargino, neutralino searches)
  - more clean conditions than in LHC
- Defined initial state + more precise measurements





### The CLIC CDR finally published Vol 3: THE CLIC PROGRAMME: TOWARDS A STAGED e+e- LINEAR COLLIDER **EXPLORING THE TERASCALE (S.Stapnes)**

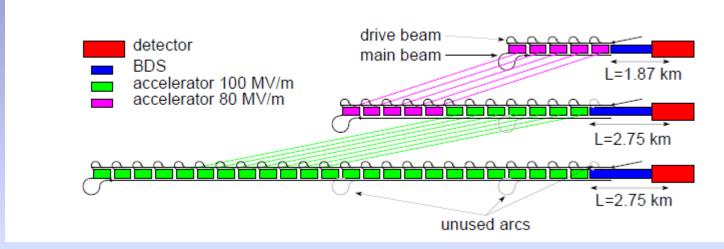




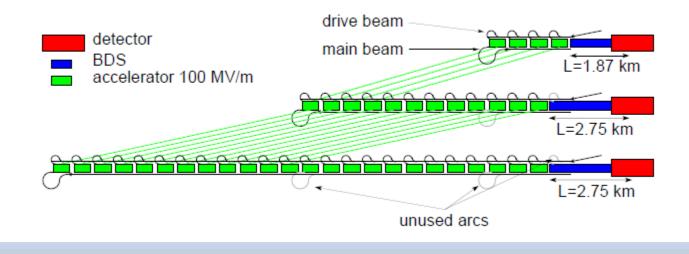
Summary and available for the European Strategy process, including possible implementation stages for a CLIC machine as well as costing and cost-drives - Proposing objectives and work plan of post CDR phase (2012-16)

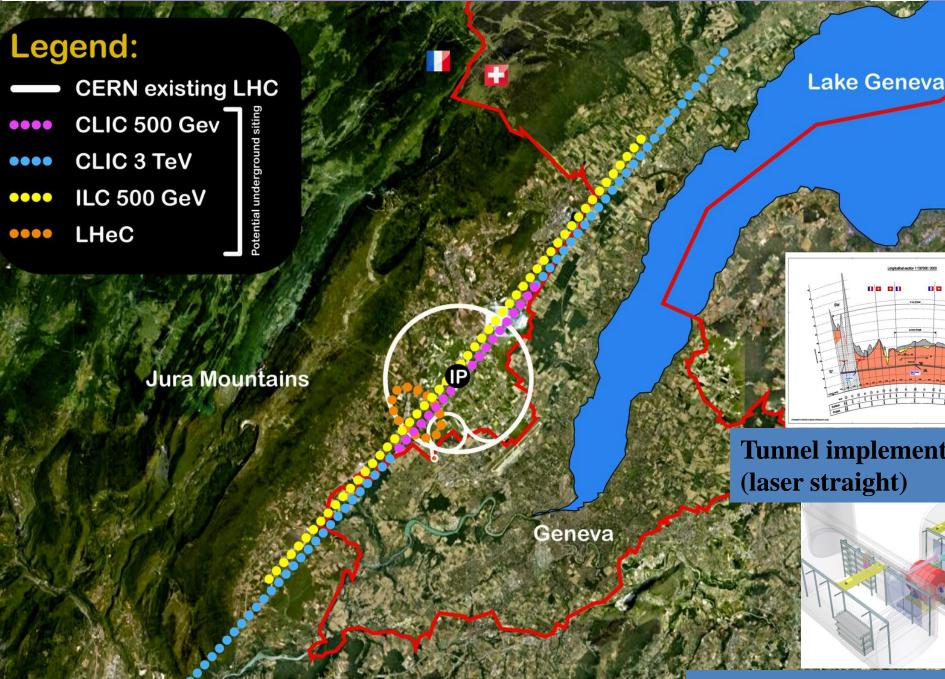
Link to the document:

https://edms.cern.ch/document/1235960/


CLIC input to the Strategy Meeting:

https://indico.cern.ch/abstractDisplay.py/ge tAttachedFile?abstractId=99&resId=0&confI d=175067


## CLIC Implementation – in stages?



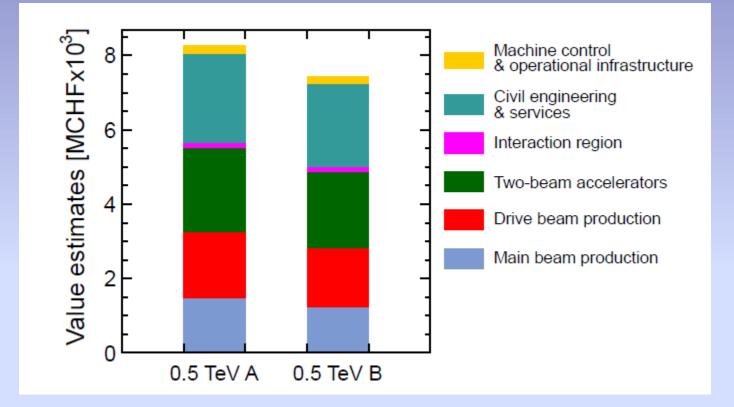

#### Scenario A, higher 500 GeV luminosity, lower gradient and larger emittance



#### Scenario B, using CLIC 3 TeV design, straight forward and less expensive






**Central MDI & Interactio** 

A CALLER AND A CAL





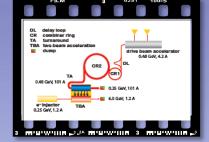




First to second stage: 4 MCHF/GeV (i.e. initial costs are very significant)

Remarks:

Uncertainties 20-25%


Possible savings around 10%

However – first stage not optimised (work for next phase), parameters largely defined for 3 TeV final stage

## CLIC project timeline



Final CLIC CDR and feasibility established, also input for the Eur. Strategy Update



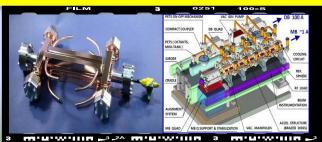


From 2016 – Project Implementation phase, including an initial project to lay the grounds for full construction:

- 'CLIC 0' a significant part of the drive beam facility: prototypes of hardware components at real frequency, final validation of drive beam quality/main beam emittance preservation, facility for reception tests – and part of the final project)
- Finalization of the CLIC technical design, taking into account the results of technical studies done in the previous phase, and final energy staging scenario based on the LHC Physics results, which should be fully available by the time
- Further industrialization and pre-series production of large series components for validation facilities
- Other system studies addressing luminosity issues (emittance conservation) ...
- Environmental Impact Study

2004 - 2012




2016 - 2022

#### ~ 2020 onwards

CLIC project construction -

2011-2016 – Goal: Develop a project implementation plan for a Linear Collider:

- Addressing the key physics goals as emerging from the LHC data
- With a well-defined scope (i.e. technical implementation and operation model, energy and luminosity), cost and schedule
- With a solid technical basis for the key elements of the machine and detector
- Including the necessary preparation for siting the machine
- Within a project governance structure as defined with international partners

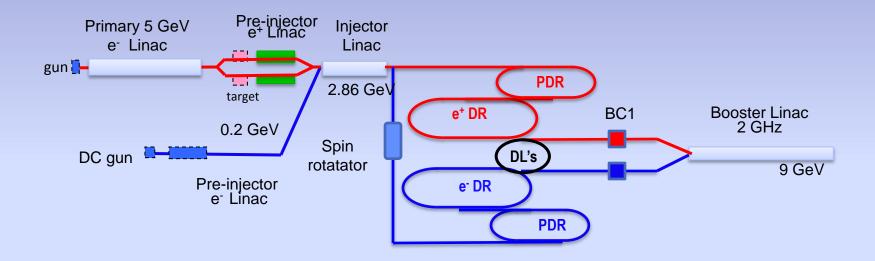


in stages, making use of CLIC 0





## Work-packages and responsibilities




| Activity                                       | Workpackage                                                    | WP leader                  |
|------------------------------------------------|----------------------------------------------------------------|----------------------------|
| Implementation studies                         | Civile engineering & services                                  | J. Osborne                 |
| P. Lebrun                                      | Project implemenation studies                                  | P. Lebrun                  |
| Parameters and Design                          | Integrated baseline design and parameters                      | D. Schulte                 |
| D. Schulte                                     | Integrated modelling and performance studies                   | A. Latina                  |
|                                                | Feedback Design                                                | D. Schulte                 |
|                                                | Main beam electron source                                      | S. Doebert                 |
|                                                | Main beam positron source                                      |                            |
|                                                | Polarisation                                                   |                            |
|                                                | Background                                                     | D. Schulte                 |
|                                                | Damping rings                                                  | Y. Papaphilippou           |
|                                                | Ring-to-main linac                                             | A. Latina                  |
|                                                | Main linac - two-beam acceleration                             | D. Schulte                 |
|                                                | Beam delivery system                                           | R. Tomas                   |
|                                                | Machine-detector interface                                     | L. Gatignon                |
|                                                | Drive beam complex                                             | B. Jeannaret               |
|                                                | Machine protection & operational scenarios                     | M. Jonker                  |
| Experimental Verification                      | CTF3 consolidation & upgrades                                  | F. Tecker                  |
| R. Corsini                                     | Drive Beam phase feed-forward and feed-backs                   | P. Skowronski              |
|                                                | TBL+, x-band high power RF testing                             | S. Doebert                 |
|                                                | Drive beam source and injector system development              | S. Doebert                 |
|                                                | Two-beam module string beam tests                              | R. Corsini                 |
|                                                | Drive Beam photo Injector                                      | C. Hessler                 |
|                                                | Accelerator Beam system tests (ATF,DR, FACET)                  | R. Tomas                   |
|                                                | Sources beam test                                              |                            |
| Technological developments & x-band technology | Damping rings sc wiggler                                       | P.Ferracin                 |
| H. Schmickler                                  | Survey & Alignment                                             | H. Mainaud                 |
|                                                | Quadrupole stability                                           | K. Artoos                  |
|                                                | Two-beam module development                                    | G. Riddone                 |
|                                                | Warm magnet prototypes                                         | M. Modena                  |
|                                                | Beam instrumentation                                           | T. Lefevre                 |
|                                                | Collimation, mask and beam dumps                               |                            |
|                                                | Controls                                                       | M. Draper                  |
|                                                | RF systems (1GHz klystron & DB cavities, DR RF)                | S. Doebert                 |
|                                                | Powering (modulators, magnet converters)                       | D.Nisbet                   |
|                                                | Vacuum systems                                                 | C. Garion                  |
|                                                | Magnetic stray fields                                          | S. Russenschuck            |
|                                                | DR extraction sytems                                           | M. Barnes                  |
|                                                | Creation of an 'in house' technology center                    | F. Bertinelli              |
|                                                |                                                                |                            |
| W. Wuensch                                     | X-band structure design                                        | A. Grudiev, I. Syratchev   |
|                                                | X-band rf structure production                                 | G. Riddone                 |
|                                                | X-band structure high power testing                            | S. Doebert                 |
|                                                | Creation and operation of x-band high power testing facilities | I. Syratchev, G. McMonagle |
|                                                | Basic high gradient R&D                                        | S. Calatroni               |



### CLIC Main Beam Injectors Layout

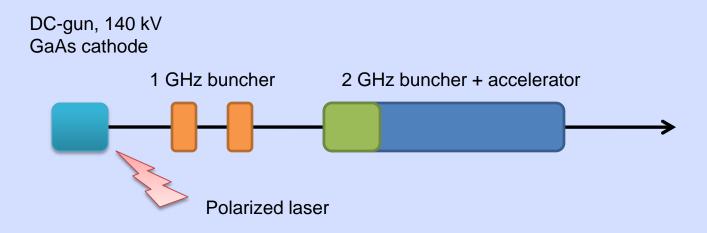




- Two hybrid positron sources (only one needed for 3 TeV)
- Common injector linac
- All linac's at 2 GHz , bunch spacing 1 GHz before the damping rings






| Parameter                             | Unit                                                                                                                                                                        | CLIC<br>polarized<br>electrons                                                                                                                                                                                            | CLIC<br>positrons                                                                                                                                                                                                                                              | CLIC booster                                                                                                                                                                                    |                                                                                                                                                                                                                   |
|---------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Е                                     | GeV                                                                                                                                                                         | 2.86                                                                                                                                                                                                                      | 2.86                                                                                                                                                                                                                                                           | 9                                                                                                                                                                                               |                                                                                                                                                                                                                   |
| Ν                                     | 109                                                                                                                                                                         | 4.3/7.8                                                                                                                                                                                                                   | 4.3/7.8                                                                                                                                                                                                                                                        | 3.75/6.8                                                                                                                                                                                        | 500 Ge                                                                                                                                                                                                            |
| n <sub>b</sub>                        | -                                                                                                                                                                           | 312/354                                                                                                                                                                                                                   | 312/354                                                                                                                                                                                                                                                        | 312/354                                                                                                                                                                                         |                                                                                                                                                                                                                   |
| $\Delta t_{b}$                        | ns                                                                                                                                                                          | 1                                                                                                                                                                                                                         | 1                                                                                                                                                                                                                                                              | 0.5                                                                                                                                                                                             |                                                                                                                                                                                                                   |
| t <sub>pulse</sub>                    | ns                                                                                                                                                                          | 312/354                                                                                                                                                                                                                   | 312/354                                                                                                                                                                                                                                                        | 156/354                                                                                                                                                                                         |                                                                                                                                                                                                                   |
|                                       | μm                                                                                                                                                                          | < 100                                                                                                                                                                                                                     | 7071, 7577                                                                                                                                                                                                                                                     | 600,10 ·10 <sup>-3</sup>                                                                                                                                                                        |                                                                                                                                                                                                                   |
| σ                                     | mm                                                                                                                                                                          | < 4                                                                                                                                                                                                                       | 3.3                                                                                                                                                                                                                                                            | 44 ·10 <sup>-3</sup>                                                                                                                                                                            |                                                                                                                                                                                                                   |
| $\sigma_{\rm E}$                      | %                                                                                                                                                                           | < 1                                                                                                                                                                                                                       | 1.63                                                                                                                                                                                                                                                           | 1.7                                                                                                                                                                                             |                                                                                                                                                                                                                   |
| Charge stability<br>shot-to-shot      | %                                                                                                                                                                           | 0.1                                                                                                                                                                                                                       | 0.1                                                                                                                                                                                                                                                            | 0.1                                                                                                                                                                                             |                                                                                                                                                                                                                   |
| Charge stability flatness on flat top | %                                                                                                                                                                           | 0.1                                                                                                                                                                                                                       | 0.1                                                                                                                                                                                                                                                            | 0.1                                                                                                                                                                                             |                                                                                                                                                                                                                   |
| f <sub>rep</sub>                      | Hz                                                                                                                                                                          | 50                                                                                                                                                                                                                        | 50                                                                                                                                                                                                                                                             | 50                                                                                                                                                                                              |                                                                                                                                                                                                                   |
| Р                                     | kW                                                                                                                                                                          | 29                                                                                                                                                                                                                        | 29                                                                                                                                                                                                                                                             | 85                                                                                                                                                                                              |                                                                                                                                                                                                                   |
|                                       | $E$ $N$ $n_{b}$ $\Delta t_{b}$ $t_{pulse}$ $\epsilon_{x,y}$ $\sigma_{z}$ $\sigma_{E}$ $Charge stability$ $shot-to-shot$ $Charge stability$ $flatness on flat top$ $f_{rep}$ | EGeVN $10^9$ $n_b$ - $\Delta t_b$ ns $t_{pulse}$ ns $t_{pulse}$ ns $\mathcal{E}_{x,y}$ $\mu$ m $\sigma_z$ mm $\sigma_E$ %Charge stability<br>shot-to-shot%Charge stability<br>flatness on flat top%flatness on flat topHz | ParameterUnitpolarized<br>electronsEGeV2.86N $10^9$ $4.3/7.8$ $n_b$ - $312/354$ $\Delta t_b$ ns1 $t_{pulse}$ ns $312/354$ $\delta_{x,y}$ $\mu$ m $<100$ $\sigma_z$ mm $<4$ $\sigma_E$ % $<1$ Charge stability<br>flatness on flat top% $0.1$ $f_{rep}$ Hz $50$ | ParameterUnitpolarized<br>polarized<br>electronsCLIC<br>positronsEGeV2.862.86N1094.3/7.84.3/7.8 $n_b$ -312/354312/354 $\Delta t_b$ ns11 $t_{pulse}$ ns312/354312/354 $\delta_{x,y}$ $\mu$ m<100 | ParameterUnitpolarized<br>electronsCLIC<br>positronsCLIC boosterEGeV2.862.869N10°4.3/7.84.3/7.83.75/6.8 $n_b$ -312/354312/354312/354 $\Delta t_b$ ns110.5 $t_{pulse}$ ns312/354312/354 $\delta_{x,y}$ $\mu$ m<100 |







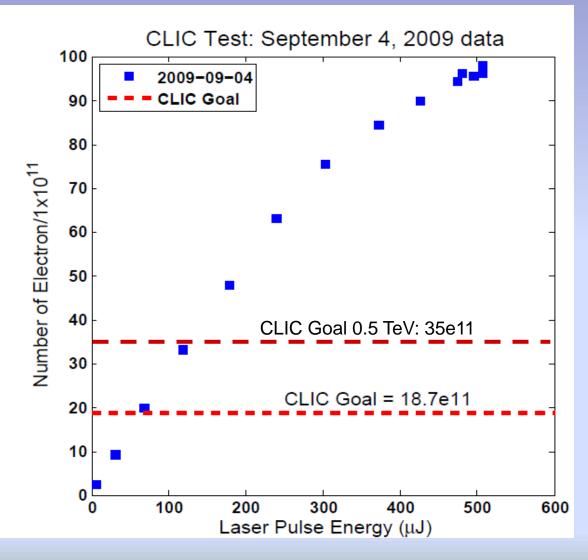
- Classical polarized source wit bunching system
- Charge production demonstrated by SLAC experiment
- Simulations showed 87 % capture efficiency (F. Zou, SLAC)



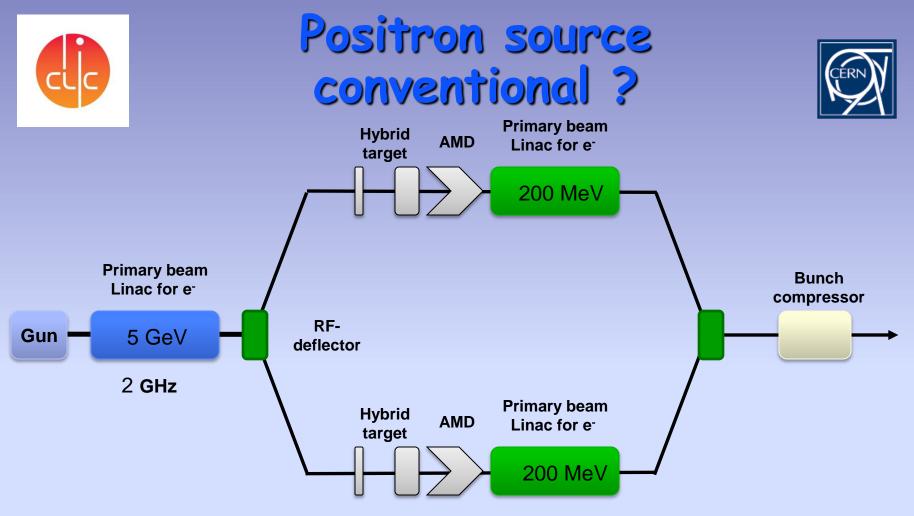


### Polarized electron source parameters




|                                         |           | POLARIZED  | SOURCE FOR CLIC | Laser scheme                                                                             |
|-----------------------------------------|-----------|------------|-----------------|------------------------------------------------------------------------------------------|
|                                         |           |            | CLIC DC/        |                                                                                          |
|                                         |           | CLIC 1 GHz | SLAC Demo       |                                                                                          |
| Number of electrons per bunch (*10^9)   |           | 3.72       | 1365            | Flash:Ti Bench                                                                           |
| Charge/single bunch (nC)                |           | 0.96       | NA              |                                                                                          |
| Charge/macrobunch (nC)                  | suo       | 300        | 300             | $\lambda/2$ II:Sapphire                                                                  |
| Bunch spacing(ns)                       | Electrons | 1          | DC              |                                                                                          |
| RF frequeny (GHz)                       | Ble       | 1          | DC              |                                                                                          |
| Bunch length at cathode (ps)            |           | 100        | DC              | Brewster Flashlamps                                                                      |
| Number of bunches                       |           | 312        | NA              | Cavity                                                                                   |
| Repetition rate (Hz)                    |           | 50         | 50              | ······································                                                   |
| QE(%)                                   |           | 0.3        | 0.3             | $rac{1}{2}$ F = 750 mm $\lambda/2$                                                       |
| Polarization                            |           | >80%       | >80%            | PL SLICE PC (Intensity<br>control)                                                       |
| Circular polarization                   |           | >99%       | >99%            |                                                                                          |
| Laser wavelength (nm)                   |           | 780-880    | 865             |                                                                                          |
| Energy/micropulse on cathode (nJ)       |           | 509        | NA              | $\square \qquad PL \qquad P$ |
| Energy/macropulse on cathode (µJ)       | ľ         | 159        | 190             | TOPS Longpulse PD                                                                        |
| Energy/micropulse laser room (nJ)       | Laser     | 1526       | NA              |                                                                                          |
| Energy/macrop. Laser room (µJ)          |           | 476        | 633             |                                                                                          |
| Mean power per pulse (kW)               |           | 1.5        | 2               |                                                                                          |
| Average power at cathode wavelength(mW) |           | 8          | 9.5             |                                                                                          |

For the 1 GHz approach cathode current densities of 3-6 A/cm<sup>2</sup> would be needed, the dc approach uses < 1 A/cm<sup>2</sup>




### Polarized electron source





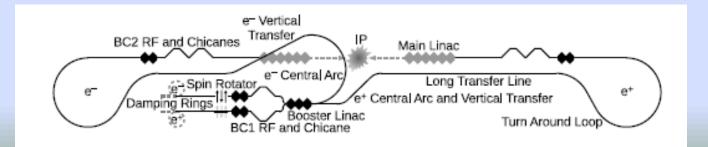
J. Shepard



AMD: 200 mm long, 20 mm radius, 6T field

| Target Parameters Crystal    |          |                |
|------------------------------|----------|----------------|
| Material                     | Tungsten | W              |
| Thickness (radiation length) | 0.4      | χ <sub>0</sub> |
| Thickness (length)           | 1.40     | mm             |
| Energy deposited             | ~1       | kW             |

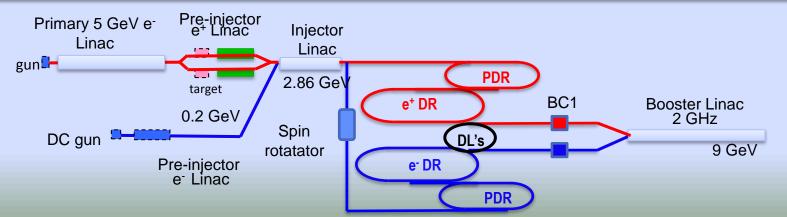
| Target Parameters Amorphous  |          |     |
|------------------------------|----------|-----|
| Material                     | Tungsten | W   |
| Thickness (Radiation length) | 3        | χ0  |
| Thickness (length)           | 10       | mm  |
| PEDD                         | 30       | J/g |
| Distance to the crystal      | 2        | m   |








#### Two stages of bunch compressors, CSR, wake fields and tolerances have been studied


|                                | BC1, 2.86 GeV        | BC2, 9 GeV          |
|--------------------------------|----------------------|---------------------|
| Rf frequency                   | 2 GHz, 15 MV/m       | 12 GHz, 74 MV/m     |
| Phase tolerance                | 0.1 deg              | 0.1 deg             |
| Bunch length after compression | 300 μm<br>factor 5.3 | 44 μm<br>factor 6.8 |
| Enegy spread after compression | 0.25 %               | 1.7 %               |
| Voltage                        | 447 MV               | 1776 MV             |







| LINAC                | Energy Gain (MeV) | Bunch charge<br>(10^9) | rf pulse length (ns) | Power per structure<br>(MW) | Loaded gradient<br>(MV/m) | Configuration<br>(structure/2<br>klystrons) | No of rf modules | pulse compressor<br>gain | No of structures | Length (m) | Energy gain per<br>module<br>(MeV) | Cost   |
|----------------------|-------------------|------------------------|----------------------|-----------------------------|---------------------------|---------------------------------------------|------------------|--------------------------|------------------|------------|------------------------------------|--------|
| e- pre-injector      | 200               | 4.3                    | 1300-<br>1700        | 54                          | 18                        | 4                                           | 2                | 2.3-2.5                  | 8.0              | 30         | 108                                | 5830   |
|                      |                   |                        | 1300-                |                             |                           |                                             |                  |                          | 0.0              |            |                                    |        |
| e+ pre-injector      | 200               | 11                     | 1700                 | 56                          | 15                        | 4                                           | 3                | 2.3-2.5                  | 9.0              | 40         | 90                                 | 8745   |
|                      |                   |                        | 3600-                |                             |                           |                                             |                  |                          |                  |            |                                    |        |
| injector linac       | 2660              | 6                      | 4000                 | 44                          | 15                        | 2                                           | 60               | 1                        | 119.0            | 300        | 45                                 | 127950 |
|                      |                   |                        | 1300-                |                             |                           |                                             |                  |                          |                  |            |                                    |        |
| positron drive linac | 5000              | 11                     | 1700                 | 56                          | 15                        | 4                                           | 56               | 2.3-2.5                  | 223.0            | 400        | 90                                 | 163240 |
|                      |                   |                        | 1700-                |                             |                           |                                             |                  |                          |                  |            |                                    |        |
| booster linac        | 6140              | 4                      | 2000                 | 53                          | 16                        | 4                                           | 64               | 2-2.3                    | 256.0            | 473        | 96                                 | 186560 |





Conclusion



- > Big milestone for CLIC, CDR finally published
- Developed interesting research program with the collaboration for next phase
- > Unfortunately not much news beyond the conceptual design on the main beam injectors due to limited resources Your help is welcome !





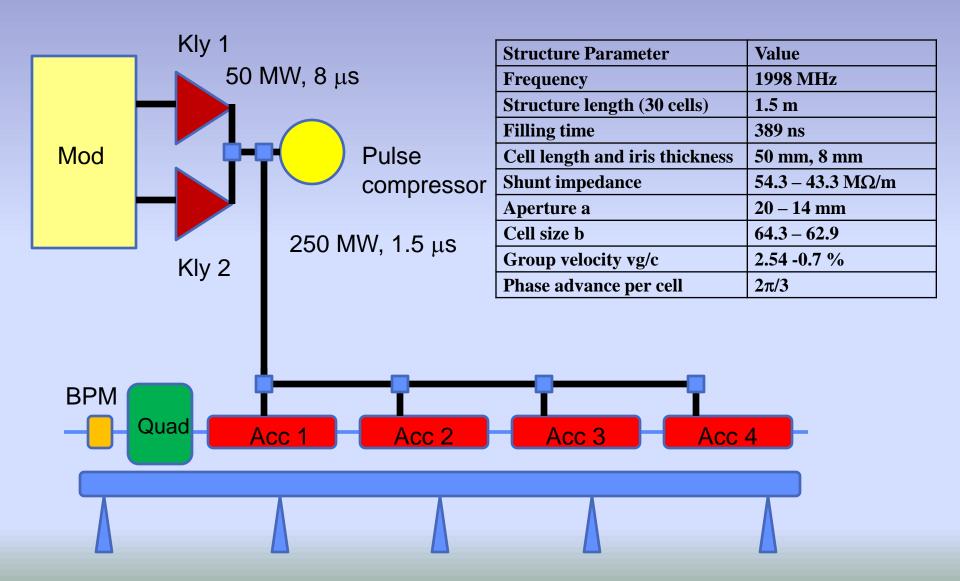




### Primary electron beam and linac



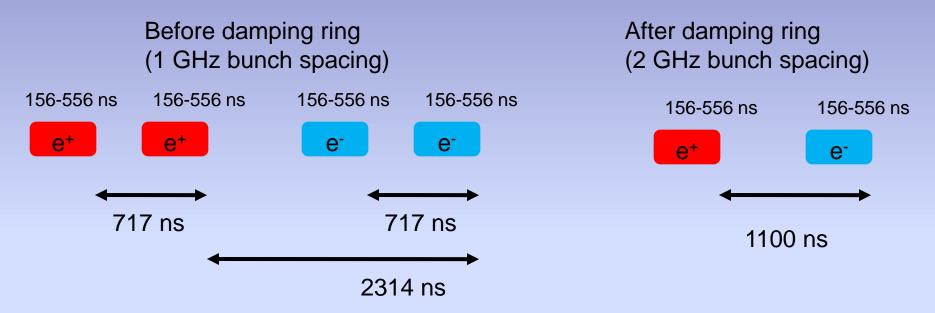
| Parameters                       |                      |     |
|----------------------------------|----------------------|-----|
| Energy                           | 5                    | GeV |
| Number of e <sup>-</sup> / bunch | $1.1 \times 10^{10}$ |     |
| Charge / bunch                   | 1.8                  | nC  |
| Bunches per pulse                | 312                  |     |
| Pulse repetition rate            | 50                   | Hz  |
| Beam radius (rms)                | 2.5                  | mm  |
| Bunch length (rms)               | 1                    | ps  |
| Beam power                       | 140                  | kW  |


• Can be done with thermionic gun or photo injector (CTF3 and Phin are nice references)

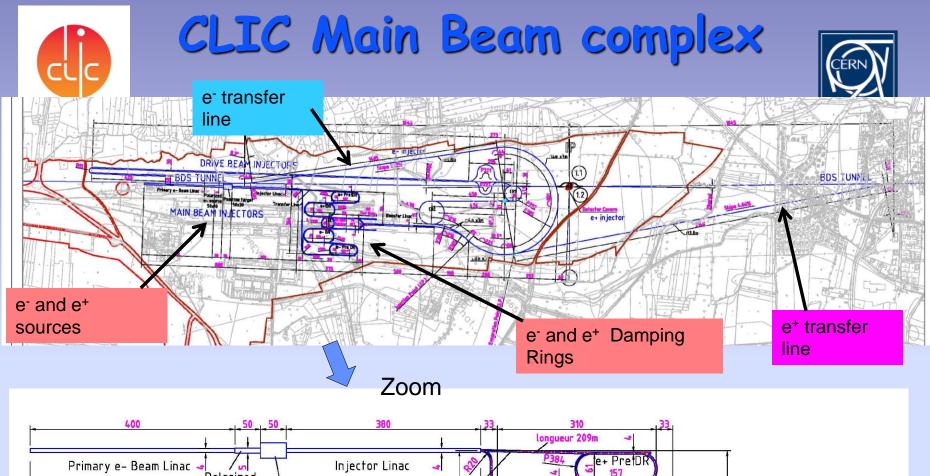
• 2 GHz rf system as used for other injector linac's

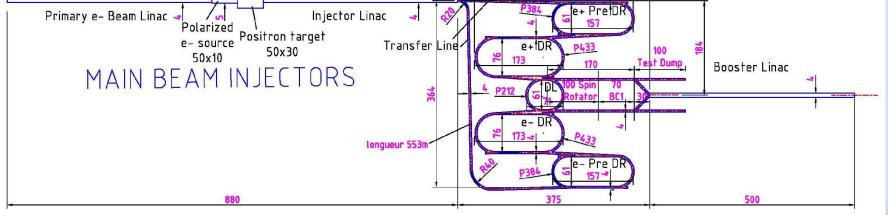


# Injector linac rf system



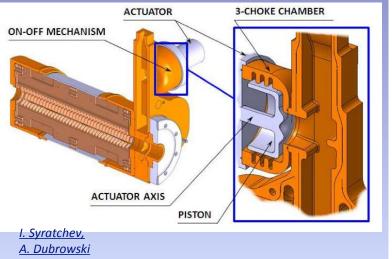




### Beam timing and operational modes





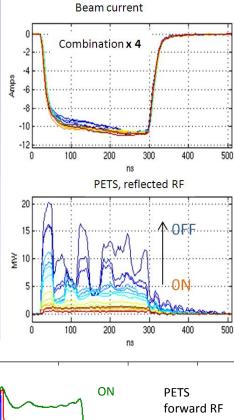

| Operational mode | Charge per bunch<br>(nC)  | Number of bunches        |
|------------------|---------------------------|--------------------------|
| Nominal          | 0.6                       | 312                      |
| 500 GeV          | 1.2                       | 312                      |
| Low energy scans | 0.6, 0.45, 0.4, 0.3, 0.23 | 312, 472, 552, 792, 1112 |











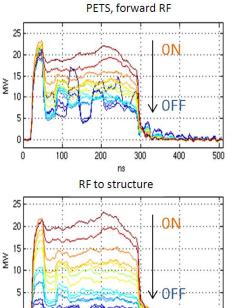

#### Demonstration of PETS of-off mechanism

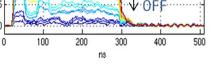
- · Considered a feasibility issue
- Ability to:
- Switch off power from individual PETS to accelerating structure in case of breakdown

Power

- Reduce substantially power in PETS, to cope with PETS breakdowns
- PETS on-off principle fully tested
- Conditioned at high power
   (135 MW nominal) by recirculation



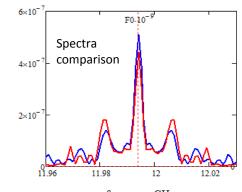

OFF


400

Time, ns

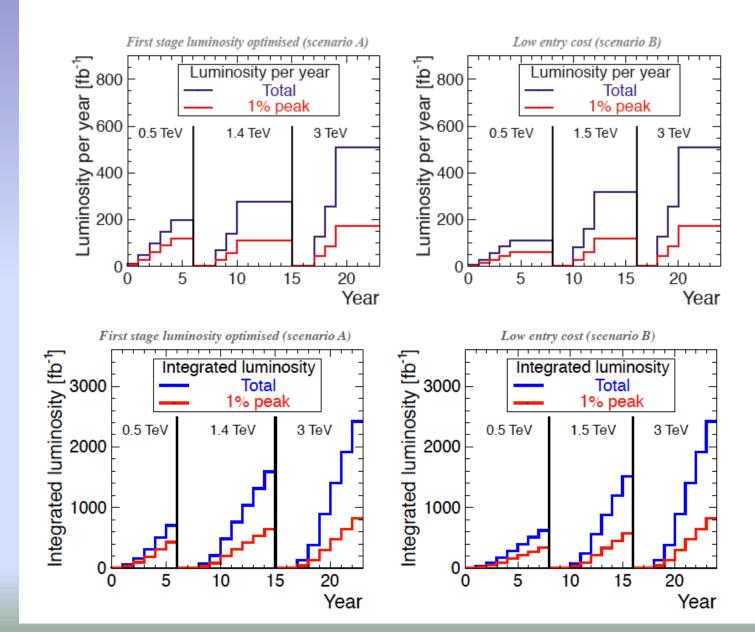
600

200






#### Simulation vs. experiment


Amplitude

800



frequency, GHz

# Possible luminosity scenarios



clc