POSIPOL-2012 workshop in DESY Zeuthen, 2012.09.04

SuperKEKB e⁺ **source**

Takuya Kamitani (KEK)

KEKB Injector & e+ source

SuperKEKB Injector & e+ source

POSIPOL workshop in DESY Zeuthen, 2012 September 04, "SuperKEKB e+ source" by Takuya Kamitani

Flux Concentrator

- 2-T pulse coil QWT system will be replaced by a 5-T FC AMD
- a BINP-type FC is under inspection of discharging problem
- a prototype of the SLAC-type spiral-slit FC is in fabrication
- straight-slit FC is also considered, larger transverse field but higher peak field

SLAC-type FC	parameters
length	100 mm
outer diameter	100 mm
inner diameter (min.)	7 mm
inner diameter max)	52 mm
peak current (for SKB)	12 kA
pulse width	4 us (half-sine)
peak field	4.4 T
inductance	0.8 uH

POSIPOL workshop in DESY Zeuthen, 2012 September 04, "SuperKEKB e+ source" by Takuya Kamitani

target offset

- for e- to pass in the beam line center of DC solenoids to avoid emittance growth, FC center should be offset in 2mm
- target center should be offset in 1.5mm from FC center
- degradation of e+ capture efficiency and beam kick effect by transverse field to be evaluated

target protection

Energy density vs Beam spot size

We do not have enough margin in the PEDD !!

Need idea for target protection.

- -> beam spoiler by light material ?
- -> beam spoiler by crystals ?

EnergyDensity[J/g]-x,y[mm]

Satellite bunch elimination

- satellite bunches generated in capture section make radiation problem in DR injection
- due to coprime (5:11) frequency relation of L-band (1298 MHz) and downstream S-band (2856MHz), most of L-band satellites are eliminated during S-band acceleration

-0.5

dz(m)

(loss = 0.40%)

all S-band case

0.015

0.01

0.005

-0.01

-0.015

-1.5

-1

0.005 0 0.005 0 0.005

-0.5

dz(m)

0

-1.5

-1

POSIPOL workshop in DESY Zeuthen, 2012 September 04, "SuperKEKB e+ source" by Takuya Kamitani

the separatrix

are lost at

DR injection

L-band R & D

- First L-band accelerating structure under high-power test now (in 2012) with an L-band 30 MW klystron.
- DC solenoid for this structure will be huge in diamater and power eating.
- By removing output coupler with a collinear dummy load, solenoid can be compact.
- However, LAS will be used in the commissioning for initial cost reduction.
- Need idea for satellite elimination with S-band.

e+/e- compatible beam optics

POSIPOL workshop in DESY Zeuthen, 2012 September 04,

"SuperKEKB e+ source" by Takuya Kamitani

SuperKEKB e+ Schedule

2012		2013						2014											2	2015							2016											
789	9 10 11	12	1 2	3	4	5	6	7	8	9 1	10 1	1 12	1	2	3	4	5	67	8	9	10 1	1	12	1	2	34	5	6	7	8	9 10	0 11	12	1	2	3	4 5	56
											CT					C 1															_							
FC dev	velo	ome	ent,	D	C s	0	en	010	d+(J+	SI	m	agı	net	:S '	fab	ric	ati	on					Δ	гт	FI		Г (7									
Capture section accelerating structures development											This is my personal opinion																											
Beam line rearrangement, installation, alignments												_	11	113	5 R	5	III.	y I	be			110		op	Ш		m,											
				_																				n	ot	a '	fO	rn	na		SC	he	ed	ul	e.			
				FC	C	ur	rer	۱t !	50%	%		- (e+	Pre	eli	mi	nai	v														_						
				Sc	ble	n.	cu	rre	ent	: 5	0%		Col	mn	nis	ssic	oni	ng																				
				Be	ear	m	rep) 0).5	Hz	Z							.0																				
																					L	.EI	Rc	ope	era	tio	n					LE	Rc	ope	era	tic	n	
												_		<u> </u>										•>				>			-				-			->
												F	FC+Solen. cur. 100% non-d								da	m	pe	d e	+													
												B	Beam rep 50 Hz Comm							mi	<mark>is</mark> sioning								_									
												n	0 [DR,	Ļ	ER	di	ec	t ir	ŋ.																		
																								1	DR	ор	er	ati	on		_	DR	0	pe	rat	ior	n	->
															F	C+S	Sol	en	cu	r. :	100)%	6	c	dar	np	ed	e+										
													Beam rep 50 Hz							Commissioning																		
													DR -> LER injection															_	HE	ER	ор	er	ati	on	->			
																															S	Sup Con	erl nm	KEI niss	KB sio	nir	۱g	

POSIPOL workshop in DESY Zeuthen, 2012 September 04, "SuperKEKB e+ source" by Takuya Kamitani

Summary

- 1) SuperKEKB: e+ source upgrade intensity 2 x (1 -> 4 nC), emittance 2000 -> 100/7 um
- 2) DR is introduced for low emittance e+
- 3) FC is introduced for wider e+ energy acceptance (QWT->AMD)
- 4) SLAC type FC and straight slit FC are in development
- 5) large aperture accelerating structures are introduced for wider transverse acceptance (L-band or Large Aperture S-band [LAS])
- 6) L-band component development is underway
- 7) 11:5 L-band frequency is effective in satellite elimination, but LAS capture section is used for initial cost reduction
- 8) e+/e- are transported
 in compatible (compromised) optics in the linac before DR,
 in independent optics after DR by pulse Qs