

International Linear Collider Project

Jefferson Science Association Initiatives Award

Continuous Electron Beam Accelerator Facility

CW Electron beam in all Halls Polarization: 85-90% Max Energy: 11GeV(ABC) / 12GeV(D) Max Current: 200 µA

3 existing end stations for nuclear physics experiments would benefit from a beam of polarized positrons:

□ Parton Imaging

- Deeply Virtual Compton Scattering
- Two Photon Exchange

Other efforts may also benefit:

Electron Ion Collider
Materials Science Collaborations

CEBAF Polarized Electron Injector

CEBAF Energy Compatibilities

Conversion efficiencies are low, but $100nA - 10\mu A$ sufficient for user requirements

Corresponding milliamp electron beams are challenging, yet possible (more later).

Polarized Bremsstrahlung & Pair Creation

PEPPo is proposing to measure the polarization transfer from longitudinal electrons to longitudinal positrons in the 3-7 MeV/c momentum range.

It followed PAC35's enthusiastic endorsement of LOI-10-010 which noted that "Any accelerator facility, like JLab, using polarized electrons for its physics program would like an intense beam of polarized positrons. This Letter marks a proof of principle experiment that should become a full proposal."

The **PEPPo** experiment (PR12-11-105) proposes to measure the **polarization transfer** from longitudinally polarized **electrons** to longitudinally polarized **positrons** as a **proof-of-principle** for a **new technique** for **polarized positron source**.

In August 2011 PAC38 recommended to run PEPPo with an "A" rating

The PEPPo experiment @ JLab

Positron Production Target Ladder

•Target ladder with viewer + 3 conversion targets

Incoming electron kinetic energy [MeV]		2	5	8	Necessary for
		Max Current [uA]		Experiment	
Target	Material	for 5W deposited			[uA]
Production Target = 0.1mm	Tungsten	15.9	27.6	30.1	4.0
Production Target = 0.5mm	Tungsten	5.0	3.0	3.7	n/a
Production Target = 1mm	Tungsten	4.9	2.0	1.6	0.4

Installation Complete November, 2011

- □ Beam line calibration, positron production & collection
- □ Calibrating Compton polarimeter with polarized electrons
- □ Measuring polarization of collected positrons

Beam line Tune-up & Check out

Electron Momentum Calibration

Collection of Degraded e- and Pair-Produced e+

S1 current optimization for $p(e^+) = 5.5$ MeV/c capture

Collection: Degraded Electrons then Positrons

"S1 - Capture Solenoid"

PositronYield

•Positron pass through 0.010" of Al and 25cm to reconversion target

- •We recognized that some fraction of positrons (or electrons) were being lost in transit
- •Comparison of simulations with data will be used to make corrections

Positron Annihilation Counter

Two NaI detectors are used to measure the back-to-back photons emitted by the annihilation of positrons in an insertable target.

4MeV/c e+ collected from 0.5nA 7MeV/c e- on 1mm W target Coincidence Cut < 8nS

- □ Beam line calibration, positron production & collection
- Calibrating Compton polarimeter with polarized electrons
- Measuring polarization of collected positrons

Compton Transmission Polarimeter (see E. Fanchini's talk on Thursday)

PEPPo polarimetry relies on the sensitivity of the Compton process to the polarization of the photons generated in the T₂ target by the interaction of incoming electrons/positrons.

Expected experimental asymmetries are small (1-8x10⁻³) and we will take advantage of the current JLab practices for the control of helicity correlated systematics.

Compton Target Polarization (using e-@ 5.5 MeV/c)

ComptonSystematic Studies

•Use Mott polarimeter to learn electron beam polarizatoin

•Use Compton polarimeter to measure experimental asymmetry

•Combine results to calculate analyzing power and benchmark model of polarimeter

PMT 5 Analyzing Power vs Momentum (P_=85%,P_=6.9%)

- □ Beam line calibration, positron production & collection
- Calibrating Compton polarimeter with polarized electrons
- Measuring polarization of collected positrons

Compton Coincidence Spectrum (Set 1 v. Set 2)

"Good" positron events collected in coincidence of thin scintillator + Compton CsI calorimeter crystal

> ~150ns coincidence

> > window

10⁵

Positron Compton Data in Two Acts...

<u>Data Set 1</u>: Preliminary pass over e+ collection momenta

Data Set 2: Improved shielding, coincidence timing & spectrometer PS stability

Preliminary Results of Positron Raw Asymmetry

 $A_{\text{Compton}} = P_{e^+} \mathbf{P}_{T} \cdot \mathbf{A}_{e^+}$

<u>Data Set 1</u> Preliminary pass over e+ collection momenta

Data Set 2

- Improved shielding of polarized background
- Improved stability of spectrometer PS
- Improved coincidence timing signal

Operated experiment with somewhat higher electron beam momentum to improve yield

Positron Source Concept at CEBAF

Suitable High Current Polarized Electron Source

R. Suleiman et al., PAC'11, New York (NJ, USA), March 28 - April 1, 2011

Parameter	Value			
Laser Rep Rate	1500 MHz			
Laser Pulselength	50 ps			
Laser Wavelength	780 nm			
Laser Spot Size	350 μm FWHM			
High-Pol Photocathode	SSL GaAs/GaAsP			
Gun Voltage	200kV DC			
CW Beam Current	4 mA			
Run Duration	1.4 hr			
Extracted Charge	20 C			
1/e Charge Lifetime	85 C			

We had a successful commissioning and run period (no show stoppers, few hiccups)

 \checkmark Used Compton polarimeter to measure polarization of electrons so that we may carefully prepare and develop model for positron analyzing power

✓Used 8MeV polarized e- beam to produce positrons and collected them with few percent momentum spread as a "beam" on polarimeter from 3-6 MeV/c

✓Used Compton polarimeter to measure experimental asymmetries while using helicity reversal (30Hz) and slow systematic reversal (laser waveplate & analyzer magnet for target polarization)

✓Lots of data "in the can"; aiming to publish results first half of 2013

A natural "next step" after PEPPo would be an experimental test of the **optimization** of a **positron collection** system and a scheme to **define the phase space** of the **positron beam** for **CEBAF acceleration**.