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We are doing design and prototyping of the 
rotating shaft seal and the capture magnet
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Capture Magnet

Target wheel
2000 rpm – 100m/s at rim
1ms beam pulse = 10cm

Water Union
Cooling water passes through shaft
Up spokes to rim

Drive motor

Support bearings

Ferrofluidic Rotating vacuum seal

Photon Beam
Positrons
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Pulsed Flux Concentrator to increase capture 
efficiency and reduce magnetic field at the target
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A pulsed flux concentrating magnet is a 
challenge for the ILC beam structure

§ Pulsed flux concentrators are a known technology that 
work well for short pulses

§ We want a constant magnetic field profile over the 1 ms 
beam pulse
• Induced currents in the concentrating plates will 

decay as stored energy is converted into ohmic 
heating

• B field strength will decay as L/R
§ Nitrogen cooling to minimize R was pursued as a 

solution
• Based on a magnet designed by Brechna
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The previous concept of the flux concentrator - 
liquid nitrogen cooled to reduce the droop 
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Target

Energizing Coils

Liquid Nitrogen Input – 65 C

Flux Concentrating disks

Liquid Nitrogen
63 C – freezing

77 C - boiling
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Liquid nitrogen cooling minimizes the problem 
but there is still a droop to the B field
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A current ramp can be created by varying the 
impedances of the pulse forming network

§ Splitting the circuit 
makes a ramp over the 
1 ms possible

§ We can try to 
counteract the 
magnetic field droop 
using the pulse forming 
network
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Turn on Ramp Decay
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A 20% current ramp over 1.5 ms leads to a 
constant magnetic field during that period

§ A current ramp from the pulse forming network can 
counteract the magnetic field droop - even at room 
temperature
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Max B field as a 
function of time

1.5 ms flat top
Current profile in 

the coils
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The design phase space has now expanded

§ Liquid Nitrogen was pursued to reduce the droop of the 
magnetic field over the ILC pulse

§ The right pulse forming network can eliminate it, even 
at room temperature

§ So why not go to a room temperature device?
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Room Temperature vs Liquid Nitrogen

§ About 4 times as much heat deposition in the plates at 
room temperature

§ But water is a much better coolant than liquid nitrogen
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Property: liquid nitrogen water

Thermal Conductivity 
(W / m K): 0.137 0.58

Heat Capacity 
(J / gm K):

2.054 4.18

Temperature Range,
solid to gas: (C)

14 100

Max Gradient (W/m) 1.92 58.0
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Water cooling and room temperature greatly 
simplifies the design 
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§ Device sits in the vacuum
§ All power and cooling connections 

move to the rim
• Coils are kapton wound, hollow 

copper, water cooled
• Plates are OFHC copper with 

water cooling pipes soldered in
• Only metal in the high radiation 

areas
§ Plates and coils stack and bolt 

together
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We built a test stack of 3 Aluminum 
concentrating plates and 2 Litz-wire coils
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Aluminum Concentrating Plates
Full Size

No cooling

Hand Wound Litz wire coils
Full Size 

No cooling
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We use a wire loop to measure the time-
dependent magnetic field in the bore

§ Wire loop:
• 5 turns
• 3/8” diameter = 7.12 x 10-5 m2

• B(T) = 2809 x Volt-seconds
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Capacitor stack configured for a single pulse
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Example measurements from 200A peak pulse
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dB/dt probe

Capacitor Voltage

Current from 
Inductive Loop
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The voltage of the dB/dt probe is integrated over 
time to measure the time dependent B Field
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Measured peak axial magnetic field out to 1000A 
peak current
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We mapped out the axial magnetic field in the 
bore as a function of position for a 200A pulse
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All measurements were done with Stainless Steel 
separators between the concentrating plates
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§ Original design had Zirconia 
Toughened Alumina insulators 
between the concentrating plates
• Potential problem with 

fracturing under 5 Hz repetitive 
stress

§ Measurements show that 
Stainless Steel is sufficiently 
insulating to achieve the peak 
magnetic field.
• More robust to repetitive stress 

and radiation

Separators
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We are done with the aluminum dummy and are 
moving on to the copper stack with cooling loops

§ Using the aluminum dummy we have:
• Verified the magnetic field versus current
• Validated the use of Stainless Steel as a separator 

material

§ Copper has the correct resistivity to test:
• The energy deposition
• The 1 ms flat top magnetic field

§ We have a design for the cooling but will not be able to 
test it in the current program
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Coils are kapton wrapped, center cooled copper, 
up-set winds, cooling is not a problem
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§ Wire dimensions:
• 7 mm x 7 mm square
• 4.5 mm dia inner hole
• resistivity 1.68e-8 Ωm
• skin depth between 5-6.5 

mm

§ Largest 25 turn coil 
• 27.8 m long wire
• will dissipate ~800W
• 5 mL/s flow - 30 cm/s - 18 

kPa
• 50 K ΔT = 900 W
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Cooling of the concentrating plate must remove 
the ohmic heating around the bore

§ Cooling lines 
should go where 
the heat is.

§ A loop should run 
around the region 
of the coil image 
current.

§ Up and down the 
side of the slit

§ Around the bore
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Plate 2 has two separate cooling loops

§ Front loop:
• Runs along slit and around 

the bore

§ Back loop:
• Runs around the bore and 

in the region of the coil 
image currents
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Front

Back
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Plate 2 with 50 turn energizing coils in place
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Plate 1 has both cooling loops on the back

§ Front:
• Bare metal to provide 

maximum shielding 
against beam particles

§ Back:
• One loop around bore and 

along slit
• One loop around the bore 

and in the image current 
region
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Front

Back
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The 3 copper concentrating plate and 2 center 
cooled copper coil test stack
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Final Measurements

§ Calibrate our magnetic field probe

§ Assemble the copper plate stack
• Pulse at full 2000A current

§ Reconfigure the capacitor stack into a Pulse Forming Network 
with the ramped pulse
• Observe the flat-top magnetic field over 1 ms
• Measure energy loss in the stack

§ 5 Hz operation will not be possible
• full test of the cooling will not happen in this program
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Final Simulations

§ The magnetic fields and energy deposition of the final 
configuration has been simulated

§ Heat flow and temperatures with the final cooling will be 
calculated

§ Forces and stresses will be calculated
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Work that should still be done

§ The slit in the first plate allows a path for radiation to 
travel from the target to the kapton insulator in the coils
• Shielding for the slit needs to be designed

§ Particle energy deposition in the plate 1 cooling lines 
should be evaluated for shock wave damage

§ Existing prototype should be run at 5 Hz, full current for 
an extended period

29


