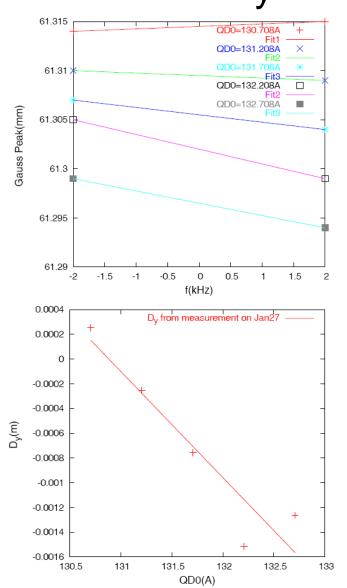
Reconstruction of Twiss parameters

Sha BAI (IHEP)

FJPPL – FKPPL ATF2 workshop LAL, 19~20 March, 2012


Outline

- IP wire scanner dispersion and vertical beam size measurement on Jan27
- Vertical projected emittance parameters at first OTR
- Twiss parameters analysis from $\sigma_{\rm y}$ scan with QD0FF
- Consistency of OTR and IP Twiss parameter measurements
- Systematic effect
- Conclusion

IP wire scanner measurement

QD0FF(A)	RAMP	Peak(mm)	σ_y (um)
130.708	+2kHz	61.315	9.265
	-2kHz	61.314	
131.208	+2kHz	61.309	5.842
	-2kHz	61.310	
131.708	+2kHz	61.304	2.5
	-2kHz	61.307	
132.208	+2kHz	61.299	5 416
	-2kHz	61.305	5.416
132.708	+2kHz	61.294	10.680
	-2kHz	61.299	

D_y measurement

QD0[A]	D _y [m]	
130.708	0.00025	
131.208	-0.00025	
131.708(waist)	-0.00076	
132.208	-0.0015	
132.708	-0.0013	

Vertical projected emittance parameters at first OTR

energy = 1.2818 GeV

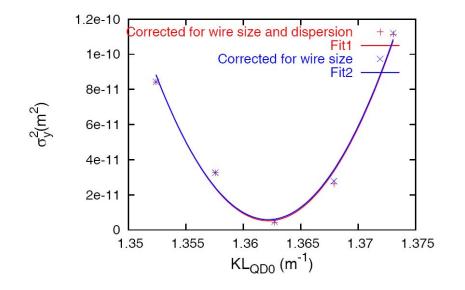
emit = 26.8171 ± 0.8137 pm

emitn = 67.2668 ± 2.0410 nm

emitn*bmag = 81.2983 ± 3.2832 nm

Bmag = 1.2086 ± 0.0294 (1.0000)

 $Bmag_cos = -0.0936 \pm 0.0000 \ (0.0000)$


Bmag_sin = 0.5537 ± 0.0000 (0.0000)

beta = 6.9850 ± 0.3050 m (6.3764)

alpha = 3.6578 ± 0.1675 (2.7281)

Chisq/N = 4.5809

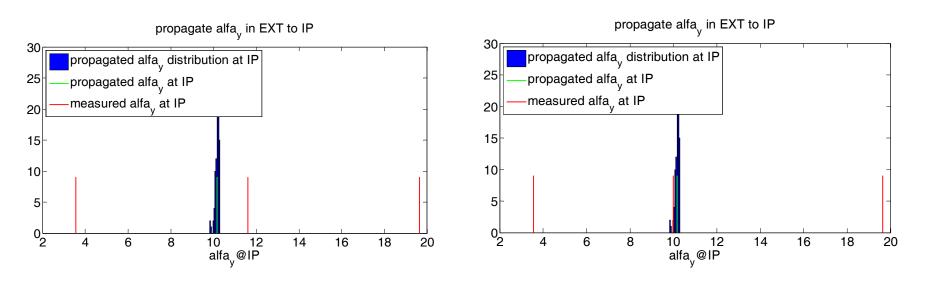
σ_{y} scan with QD0

Fit with $Y=A(X-B)^2+C$

A = $(8.68 \pm 0.89) \text{ e-07}$ B = 1.36218 ± 0.00032 C = $(5.24 \pm 0.63) \text{ e-12}$ COVac= -0.770

Calculate Twiss Parameter :

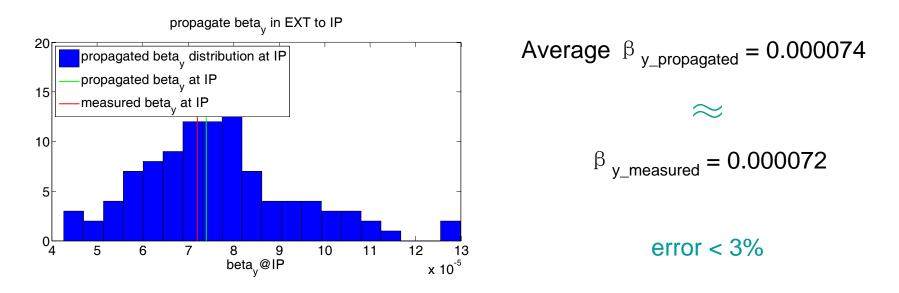
• Method 1:
$$\beta_{y} = \frac{\varepsilon_{y}a^{2}}{A} = 0.000071 \pm 0.000007 \text{ (m)} \quad \varepsilon_{y(\text{EXT})} = 26.8 \text{pm}$$
$$by \text{ OTR measurement}$$
$$\alpha_{y} = \frac{A(B-Q)}{\varepsilon_{EXT}a} = 11.60 \pm 8.04$$


 Method 2 is not applicable, since BX2.5BY1 optics is loaded and minimum σ_y can not be resolved.

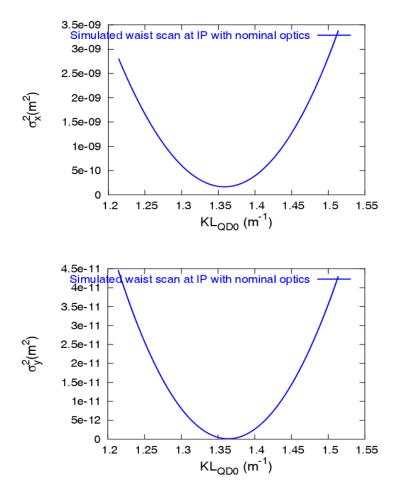
Consistency of OTR and IP Twiss parameter measurements

- Refit the QM quads based on the OTR measured central Twiss values
- Vertical waist measured value with quite large error, subtract 0.2 sigma of the measurement error

Propagation of Vertical Twiss (measured on Jan27) to IP


~ *a*_v

Average $\alpha_{y_propagated} = 10.17 \approx \alpha_{y_measured} - 0.2 \sigma = 10.0$ error < 2%


- The twiss parameters which measured at first OTR were propagated to the IP.
- The propagated α_y are compared with the measured ones, after subtracting 0.2 σ , good consistency was got.

Propagation of Vertical Twiss (measured on Jan27) to IP ~ $\mathcal{\beta}_y$

- The twiss parameters which measured at first OTR were propagated to the IP.
- The propagated β_y are compared with the measured ones, and good consistency was got.

Systematic Effect

Method 1:

 $\beta_x = \epsilon_x * a^2 / A = 2e - 9 * 2.43^2 / 1.29932e - 7 = 0.0909 \pm 0.0002$ $\beta_y = \epsilon_y * a^2 / A = 1.18e - 11 * 1.27^2 / 1.88722e - 9 = 0.01008 \pm 0.00034$ Method 2:

 $\varepsilon_x = \sqrt{AC/a} = \sqrt{1.29932}e^{-7*1.65111}e^{-10/2.43} = (1.906 \pm 0.015)e^{-9}$

 $\beta_x = a\sqrt{C/A} = 2.43 * \sqrt{1.65111e} - 10/1.29932e - 7 = 0.0866 \pm 0.0008$

 the simulation check shows that the systematic is well controlled in methods 1 and 2 for β and emittance estimation at the IP, once β is small enough. and prove that the measured twiss analysis methods give reliable results with small enough systematic effect.

Conclusion

- Good consistency of OTR and IP Twiss parameter measurements, considering large error for the measured vertical waist.
- Systematic effect of twiss analysis methods is quite small.