Hector Garcia Morales^{1,2}, Yves Renier², Rogelio Tomas²

 1 Universitat Politècnica de Catalunya, Barcelona 2 CERN, Geneve

March 20, 2012

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Outline

- 2 Orbit reconstruction
- 3 Transfer Matrix reconstruction
- 4 Monitoring input parameters
- 5 Jitter studies

6 Coclusions

Trajectory and jitter measurements ATF2 GOALS

Goal 1

Goal 1 and 2 $\,$

- $\bullet\,$ Main target: reach 37nm beam size at the IP.
- Reproducibility and stability of the extracted beam to get a 2nm stability at the IP.

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへ⊙

Question

Can trajectory reconstruction reliably monitor input parameters?

Trajectory and jitter measurements Orbit reconstruction

Orbit reconstruction

Question

Can trajectory reconstruction reliably monitor input parameters?

Challenge (P.Bambade)

Not only the short time variations which should be stabilized by feedback, but also longer term reproducibility on the time scale of one to several weeks.

Transfer Matrix reconstruction

Transfer Matrix Reconstruction

Define the state vector in phase space:

$$\psi(s) \equiv \left(x(s), x'(s), y(s), y'(s), \delta = \frac{\Delta E}{E}\right)$$

in linear approximation we have:

$$\psi_i(s) = R_{ij}(\text{IEX} \to s)\psi^j(\text{IEX})$$

where s is given by the BPMs positions and IEX is the starting point of the Extraction Line.

Trajectory and jitter measurements Transfer Matrix reconstruction

From BPMs we can measure only ψ_1 and ψ_3 and then:

$$\Phi = (\psi_1(1), \dots, \psi_1(N), \psi_3(1), \dots, \psi_3(N))$$

 $\Phi = \mathcal{R}\psi(\text{IEX})$

where \mathcal{R} is a $2N \times 5$ matrix of the form:

$$\mathcal{R}_{ij} = R_{1j}(i), i = 1, \dots, N$$

$$\mathcal{R}_{ij} = R_{3j}(i), i = N+1, \dots, 2N$$

explicitly:

$$\begin{pmatrix} \psi_1(1) \\ \vdots \\ \psi_1(N) \\ \psi_3(1) \\ \vdots \\ \psi_3(N) \end{pmatrix} = \begin{pmatrix} R_{11}(1) & R_{12}(1) & R_{13}(1) & R_{14}(1) & R_{16}(1) \\ \vdots \\ R_{11}(N) & R_{12}(N) & R_{13}(N) & R_{14}(N) & R_{16}(N) \\ R_{31}(1) & R_{32}(1) & R_{33}(1) & R_{34}(1) & R_{36}(1) \\ \vdots \\ R_{31}(N) & R_{32}(N) & R_{33}(N) & R_{34}(N) & R_{36}(N) \end{pmatrix} \begin{pmatrix} \psi_1(IEX) \\ \psi_2(IEX) \\ \psi_3(IEX) \\ \psi_4(IEX) \\ \psi_6(IEX) \end{pmatrix}$$

Trajectory and jitter measurements Transfer Matrix reconstruction

- We need to test the accuracy of the linear model.
- To prove it, we can measure the elements R_{12} and R_{34} and compare them with the model.

We need three measurements to extract R_{12} and R_{34} :

•
$$\psi_{\text{BPM}} = (x, x', y, y')$$

• $\psi_{\text{COR}_x} = (x, x' + \theta_x, y, y')$
• $\psi_{\text{COR}_y} = (x, x', y, y' + \theta_y)$
then

$$\psi_0^{1,3} = R_{11,33}\psi_0^{1,3}(0) + R_{12,34}\psi_0^{2,4}(0)$$
$$\psi^{1,3} = \psi_0^{1,3} + (R_{12,34})\theta_{x,y}$$

hence

$$R_{12} = \frac{\Delta x}{\theta_x} \qquad R_{34} = \frac{\Delta y}{\theta_y}$$

Trajectory and jitter measurements Monitoring input parameters

Measurement

- Horizontal corrector ZH1X.
- Vertical corrector ZV1X.
- Correction angles: $\theta = (1, 3, 5, 7, 10)\mu$ rad
- The reconstructed orbit is the average of the data for all the angles.

Monitoring input parameters

 R_{34}

Trajectory and jitter measurements Monitoring input parameters

Cleaning the results

Due to some fluctuations, some measurements are far from the expected. We need to clean them.

- Remove zero BPM readings.
- Remove orbit $\alpha = 5\mu$ rad for R_{12}
- Remove a few readings form orbit $\alpha = 1\mu$ rad for R_{34}

All removed points are replaced by the average of the two BPM readings from just upstream and downstream of the point.

Monitoring input parameters

Trajectory and jitter measurements Monitoring input parameters

Monitoring input parameters

- We have seen that the model agrees with the measured matrix elements.
- We can use the orbit reconstruction to extract the initial beam jitter.
- We do the calculation over 50 pulses and 47 BPMs.
- For each pulse (set of BPM readings) we can reconstruct (x, y) at IEX.
- We extract the rms jitter as: $\sigma_{\text{jitt}} = \sqrt{\langle u^2 \rangle}, \ u = x, y, x', y'$

Jitter

$$\begin{split} \sigma_x^{\text{jitt}} &= 0.09 \sigma_x \;, \;\; \sigma_{x'}^{\text{jitt}} = 0.17 \sigma_{x'} \\ \sigma_y^{\text{jitt}} &= 0.13 \sigma_y \;, \;\; \sigma_{y'}^{\text{jitt}} = 0.22 \sigma_{y'} \end{split}$$

Trajectory and jitter measurements Jitter studies

Jitter simulations

- We see the influence of the EXT \rightarrow FFS jitter in goal 1 and goal 2.
- 50 Gaussian Beams of 50000 particles.
- Without jitter: $(\Delta x, \Delta y, \Delta p_x, \Delta p_y) = (0, 0, 0, 0)$
- With jitter: $(\Delta x, \Delta y, \Delta p_x, \Delta p_y) = (0.09\sigma_x, 0.13\sigma_y, 0.17\sigma_{x'}, 0.22\sigma_{y'})$
- MADX+PTC tracking.
- We compare both Nominal and Ultra-low β^* lattices with both current FD and new FD proposed by CERN.

Jitter studies

Stability influence: Nominal lattice

Jitter studies

Stability influence: Nominal lattice with New FD

Jitter studies

Stability influence: Ultra-low β^* lattice

Jitter studies

Stability influence: Ultra-low β^* lattice with new FD

Trajectory and jitter measurements Jitter studies

Jitter transport to IP

Initial jitter at EXT:

$$\sigma_{\rm jitt}^{\rm EXT} = 0.13 \sigma_y^{\rm EXT}$$

Jitter at IP:

Lattice	Jitter w. Curr. FD (σ_y^*)	Jitter w. New FD (σ_y^*)
Nominal	0.18	0.13
Ultra-low β	0.24	0.18

$$\sigma_{\text{jitt}}^* = M(\text{EXT} \to \text{IP})\sigma_{\text{jitt}}^{\text{EXT}}$$
$$\sigma_{\text{jitt}} \sim R\sigma_{\text{jitt}_0} + \underbrace{e^{:\mathcal{H}:}}_{\text{nonlinear}} \sigma_{\text{jitt}_0}$$

- If new FD, jitter doesn't increase for Nominal.
- In UL, non linear effect might appear.

Jitter studies

Influence on the Beam Size, Nominal lattice

	$\sigma_y^*(\text{core}) \text{ [nm]}$	$\sigma_y^*(\text{shi}) \text{ [nm]}$	$\sigma_y^*(\text{rms}) \text{ [nm]}$
Ideal w/o jitter	33.7	34.90	34.4
Ideal w jitter	33.8	34.94	34.9
Curr. FD w/o jitt.	41.7	46.4	59.1
Curr. FD w jitt	41.9	46.8	60.1
New FD w/o jitt	39.2	42.1	44.6
New FD w jitt	39.4	42.5	45.5

$$\sigma_{\rm eff}^* = \sqrt{{\sigma_{\rm jitt}^*}^2 + {\sigma^*}^2}$$

Jitter studies

Influence on the Beam Size, Ultra-low β^* lattice

	$\sigma_y^*(\text{core}) \text{ [nm]}$	$\sigma_y^*(\text{shi}) \text{ [nm]}$	$\sigma_y^*(\text{rms}) \text{ [nm]}$
Ideal w/o jitter	17.46	19.5	18.4
Ideal w jitter	17.50	19.6	18.7
Curr. FD w/o jitt.	35.0	55.6	85.8
Curr. FD w jitt	34.8	56.3	89.9
New FD w/o jitt	29.0	45.1	54.4
New FD w jitt	29.0	45.9	56.1

$$\sigma_{\rm eff}^* = \sqrt{{\sigma_{\rm jitt}^*}^2 + {\sigma^*}^2}$$

Trajectory and jitter measurements Coclusions

Conclusions

- In order to reach the goal 2 (2nm stability), we need to correct the jitter before the FFS.
- Although 4nm stability, the beam size remains quite constant.
- To reach Goal 1 (37nm) we need to re-optimize the system.
- With the new FD and for the Nominal lattice, there would not be jitter enhancement at the FFS.
- Ultra-low β* enhances the jitter at the IP due to nonlinearities.

To be done...

- Study of the long term stabilization.
- Apply jitter results to the Ultra-low β^* with swapped magnets.