# Overview of IPBPM objectives

### by T.Tauchi ATF2 Meeting, LAL, 19 -20 March 2012

2012年3月19日月曜日

# Resolution :IPBPM (2nm) Starting point of the design work

Y.Honda, 1st ATF2 project meeting

- Challenges
  - ultimate y-direction resolution
    - I nm signal > thermal/amplifier noise
  - under angle jitter condition
    - I00 urad angle signal < I nm position signal</li>
  - under large x jitter
- Basic idea
  - thin gap to be insensitive to the beam angle
  - small aperture to keep the sensitivity
- Additional idea
  - separation of x and y signal
  - higher coupling to have stronger signal



2012年 3月 19日 月曜日

# 3, Resolution Run



 $+ \alpha_{X3I} * X3I + \alpha_{X3Q} * X3Q + \alpha_{Xref} * XREF$ 

# 4, Position Resolution





### **Residual vs Time**

Resolution = geo\_factor x (RMS of residual (ADC ch) / calibration slope (ADC ch/nm))

Position resolution for 1 hour run: 8.72 +- 0.28 (stat.) +- 0.35 (sys.) nm (ICT =  $0.68 \times 10^{10} \text{ e}$ /bunch, dynamic range = 4.96 um ) at the ATF2 condition (1~2 ×10<sup>10</sup> e/bunch), 5.94 ~ 2.97nm Stable enough for 1 hour

# **Resolution - Homodyne**

| Vertical    | Charge : 0 | <sup>,</sup> Unit [nm] |       |
|-------------|------------|------------------------|-------|
|             | 40 dB      | 30 dB                  | 20 dB |
| One point   | 10.0       | 15.0                   | 16.0  |
| Filter      | 6.90       | 8.12                   | 9.05  |
| Integration | 6.73       | 7.55                   | 10.09 |

### Horizontal

|             | 40 dB | 30 dB | 20 dB |
|-------------|-------|-------|-------|
| One point   | 20.0  | 39.0  | 72.0  |
| Filter      | 14.52 | 26.14 | 50.08 |
| Integration | 16.50 | 23.91 | 35.00 |

- SVD Residual
- Charge normalized
- Working on heterodyne data
- One point
  - Choose one sample point
- Filter
  - Use gaussian filter for removing noise on the homodyne signal
  - Choose one sample point
- Integration
  - Integrated few sample point
  - Same as charge ADC
- Did few scans for finding filter width, sample point and integration width

January 11, 2012

kimyoungim@gmail.com

Younglm Kim, 13th ATF2 Project meeting, 11-13 January, 2012

## Waveform – heterodyne (multi bunch)



#### We can see clearly the bunch separation. But, how can we use reference information for charge normalization??

January 11, 2012

kimyoungim@gmail.com

14

Younglm Kim, 13th ATF2 Project meeting, 11-13 January, 2012

### 2. Calibration Mover

#### by Y.Honda, Feb. 2006



- precise mover I axis (X or Y)
  - for calibrating the BPM
  - <500nm step, 2um range
  - piezo based
  - closed loop
  - similar as KEK nano-bpm active mover
- overall mover
  - align the system on the beam
  - many axes (4?)
  - mm range, um precision
  - not yet determined
    - hexapod?, LW table like? etc.



#### by Y.Honda, Feb. 2006

# installation schedule

- Oct. 2008 ~ Mar. 2009
  - beam line comissioning
  - Shintake monitor comissioning
  - continue IP-BPM development at the device test section
- Apr. 2009 ~
  - move to IP area
    - a new alignment mover is needed because the FFTB mover will be used for a magnet
  - IP-BPM mode
    - shift the IP at the center of IPBPM quartet
  - Shintake mode
    - calibrate (check resolution) BPM inside the collision chamber using the IPBPM



### Orbit Monitor at IP

• IP BPM installed : September, 2010



### 3. Layout

IPBPM Triplet with movers in the IP chamber



2012年3月19日月曜日

### 4. Waist (IP) shift to the IPBPM-C

fit MIPC bx 4e-3 by 1e-4 ax 0 ay 0 ex 0 ey 0 by SAD fitting free QD0FF QF1FF go mea MIPC; results of fitting by tracking Statistics at MIPC: particles = 1000 RAD: F, RFSW: T, GAUSS: T, DP = 8.0000E-4, DP0 = .000000, GCUT = 1.0000E35 x px/p0 y py/p0 z dp/p0 C of M : -1.108E-06 3.320E-05 5.097E-10 2.666E-05-1.089E-05 5.308E-05 x: 1.120E-11 px/p0: 2.655E-11 5.221E-07 y:-3.692E-15 1.196E-13 1.734E-15 py/p0: 1.168E-11-1.828E-09 2.810E-13 1.045E-07 z:-5.749E-11-1.643E-08-4.425E-13 4.280E-10 2.179E-08 dp/p0: 2.950E-10 8.629E-08 2.318E-12-2.194E-09-1.136E-07 5.925E-07 x-y projected(coupled) parameters: emitx: 2.3730E-09 bx: 4.6574E-03 ax: 6.9157E-03 ex: 4.9785E-04 epx: 0.1456 emity: 1.3421E-11 by: 1.2855E-04 ay:-2.1576E-02 ey: 3.9126E-06 epy:-3.7024E-03 x-y decoupled parameters: emitu: 2.3730E-09 bu: 4.6574E-03 au: 6.9157E-03 eu: 4.9784E-04 epu: 0.1456 emitv: 1.3411E-11 bv: 1.2848E-04 av:-2.1961E-02 ev: 4.1964E-06 epv:-3.8387E-03 r1: 4.3964E-04 r2: 4.4624E-07 r3: -1.155 r4: 3.0136E-03detr: 1.8405E-06 42nm can be achieved sigx: 3.3465E-06 sigy: 4.1646E-08 tilt: 3.2977E-04 sigpx: 7.2257E-04 sigpy: 3.2320E-04 just by QD0 and QF1. sigp/p: 7.6972E-04 sigz: 1.4761E-04 dp/p/z:-7.6971E-04/sigz



2012年 3月 19日 月曜日





2012年 3月 19日 月曜日



2012年3月19日月曜日

### 174° mode path

### 30° mode path

### 8°, 2° mode paths

### 30° mode path

IP chamber seen from the downstream

2012年3月19日月曜日

- Electron Bea

74° mode path

### 6. Wakefield



#### y' = 1.25 ur / mm for I= 1 x 10<sup>10</sup>/bunch, where y' = A $\Delta y$

|            | SIPBPM : distance                                       | vertical beam size,               | y' nr                                         | y' x Sipbpm              |
|------------|---------------------------------------------------------|-----------------------------------|-----------------------------------------------|--------------------------|
|            | from IP(C), cm                                          | um                                | for 30% y jitter                              | nm                       |
| В          | 15.8                                                    | <sub>γ</sub> 54.9                 | 20.5                                          | 3.3                      |
| A          | 23.9                                                    | 82.9                              | 31.0                                          | 7.4                      |
|            |                                                         |                                   |                                               |                          |
| IPBPM      | S <sub>IPBPM</sub> : distance<br>from IP(B), cm         | vertical beam size,<br>um         | y'nr<br>for <mark>30% y jitter</mark>         | y' x Siрврм<br>nm        |
| IPBPM<br>A | S <sub>IPBPM</sub> : distance<br>from IP(B), cm<br>7.92 | vertical beam size,<br>um<br>27.4 | y'nr<br>for <mark>30% y jitter</mark><br>10.2 | y' x Siрврм<br>nm<br>0.8 |

y' = 1.13 ur / mm for I= 1 x 10<sup>10</sup>/bunch by Karl's calculation (Mafia, KNU-IPBPM) in next slide



# Summary

- Resolution : preliminary results based on the SVD analysis
  6.7nm at 0.6x10<sup>10</sup>/bunch -> 4.02/2.01 at 1/2 x10<sup>10</sup>/bunch Multi-bunch capability should be estimated
- 2. Calibration needs movers in both direction Orbit monitor at IP w/o movers
- 3. Layout for the IP feedbackTriplet : upstream 2 IPBPMs (A,B) and downstream an IPBPM(C)New IP is the center of the IPBPM-C.
- 4. Waist shift to a new IP is OK by SAD calculation
- 5. IP chamber geometry

Detailed evaluation of the geometry is needed with present optical components and necessary modifications if needed.

#### 6. Wakefield

IPBPM would produce vertical jitter of 7.4 (15) and 3.3 (6.6)nm at the beam intensity of 1 x (2)  $10^{10}$  in cases of IP(C) and IP(B), respectively, assuming 30% jitter of vertical position at the IPBPMs. So, the upstream feedback may be needed especially for 2x10<sup>10</sup>/bunch. Dedicated beam test at the upstream is needed to verify the calculation.<sup>18</sup>