# Update on recent results of FONT5 beam-tests at ATF

Glenn Christian 20 March 2012

### FONT5 upstream feedback system @ ATF2

•Bunch-by-bunch (two-phase) position and angle feedback: 3 stripline BPMs (on movers), 2 stripline kickers



• Ideal: 2 loops,  $\pi/2$  betatron phase advance between each loop. Loop1 (P2-K1) corrects position (angle) at P2 (P3); loop 2 (P3-K2) corrects angle (position) at P2 (P3).

• As phase advance is not exactly  $\pi/2$  - loops coupled. Kicker drive signals linear function of both P2 and P3 measurements.

•Correct correlated jitter at two phases – remain corrected at arbitrary location downstream

•FB with two or three bunch per trains. Measure first bunch, correct subsequent bunches.

## FONT5 Hardware



Analogue Front-end BPM processor



Strip-line BPM with mover system



FPGA-based digital processor



Kicker drive amplifier



Strip-line kicker

## FONT5 Hardware

| Analogue Fron | t-end FPGA-based digital          |                                  |                     |
|---------------|-----------------------------------|----------------------------------|---------------------|
| BPM process   | sor processor                     |                                  |                     |
|               | System Resolution (BPM processor) | <1 µm                            |                     |
|               | System Latency                    | <150 ns                          | ker drive amplifier |
|               | Amplifier/ Kicker Bandwidth       | ~30 MHz                          |                     |
|               | Dynamic Range of feedback system  | k system +/- ~100 μm<br>(>46 dB) |                     |
|               | Dynamic range of the BPM system   | +/- ~500 μm<br>(>60 dB)          |                     |
|               |                                   |                                  |                     |
|               | System parameters                 | Strip-I                          | ine kicker          |

Strip-line BPM with mover system

## Feedback Performance (2) – Jitter Reduction @ P2 (16 April 2010)



## Feedback Performance (2) – Jitter Reduction @ P2 (16 April 2010)



## Feedback Performance (2) – Jitter Reduction @ P2 (16 April 2010)





## Feedback Performance (2) – Jitter Reduction @ P2 (16 April 2010)





Measured bunch-to-bunch correlations:

Bunch 2 – Bunch 3 : 89 %

$$\sigma'_{n}^{2} = \sigma_{n}^{2} + \sigma_{n-1}^{2} - 2 \operatorname{cov}(n, n-1)$$
  
Bunch 2 result implies resolution of ~  
300 nm!

### Feedback Performance (3) – Jitter Reduction @ P3 (16 April 2010)





Measured bunch-to-bunch correlations:

Bunch1- Bunch2 = 84%

Bunch2 - Bunch3 = 87%

(Bunch1 - Bunch3 = 94%)

# Processor Improvements (2011)

- Hypothesis that discrepancy between FB results and resolution due to sensitivity of measured position to LO phase jitter
  - All processors/BPMs exhibit different sensitivity to LO jitter wrt beam. (P2 just happens to be least sensitive.)
  - Effects cancel for measurements using just one BPM, for example FB, whereas measurements involving correlating positions across several BPM, appear to have poor resolution.
  - Largest effect due to path length imbalance to hybrid (unique for each processor) larger residual from subtraction, more susceptible to LO jitter
- All processors optimised (summer 2011)
  - Input cables optimised for matched path length at hybrid
  - Sum loopback cables re-made to phase sum and difference channels
- Also, discovered and fixed problem with sampling jitter caused by noise pickup on ADC clocks from FPGA (affected correlated measurements across more than one BPM, hence contributed to effective resolution)

# Summary of FONT data-taking visits 2011/2012

- June 2011 (Burrows, Perry, Apsimon, Bett, Davis)
  - 1 week, no shifts
  - Check-out of FB instrumentation post earthquake
- October 2011 (Perry, Bett, Davis)
  - 1 week, no shifts requested
  - Parasitic measurements of processor performance
- November 2011 (Christian, Bett)
  - 1 week, 2 shifts
  - Studies in DR and EXT of jitter and bunch phase stability wrt LO, and clock stability studies
- Nov-Dec 2011 (Burrows, Christian, Apsimon, Bett, Davis, Blaskovic)
  - 3 weeks, 2 shifts per week
  - 2 bunch feedback in EXT with BS 187.6 ns
- March 2012 1 week (Bett, Davis, Blaskovich)
  - 1 week, 2 shifts.
  - Further investigations of phase jitter effects.

## Summary of Nov-Dec data-taking

- Investigated 2 bunch extraction
  - Vary bunch spacing & extraction kicker timing
- Resolution studies (mostly parasitic)
- 2 bunch feedback @ 187.6 ns spacing
  - Instrumented MQF14X, MQD15X, and MFB1FF
  - 'Standard' set of measurements
    - BPM calibrations
    - LO-phase sensitivity scans
    - Single loop FB , P2-K1, P3-K2 and two loop coupled/uncoupled FB
    - Kicker calibrations (transfer function measurement -> FB gain)
    - FB gain scans (vary four loop gain values by +/- 20-40 % around nominal point)
    - FB loop latency measurements

## December 2011 FB results Feedback BPMS



## December 2011 FB results Witness BPMS (1)



## December 2011 FB results Witness BPMS (2)



### Feedback examples (14 Dec 2011)

Run6\_141211









## **BPM resolution tests (parasitic)**

October 2011 – 3 processors on P2 (Charge ~1000-1500 cnts, Jitter 3-4 microns)

| Proc1 | 0.55 | 0.56 | 0.53 | 0.50 | 0.45 | 0.50 |
|-------|------|------|------|------|------|------|
| Proc2 | 0.56 | 0.54 | 0.40 | 0.35 | 0.44 | 0.43 |
| Proc3 | 0.60 | 0.51 | 0.35 | 0.33 | 0.35 | 0.36 |

Minimum resolution based on ADC noise alone

December 2011 – 2 processors on P1,P2,P3

| Board # | Method                     | P1 soln      | P2 soln      | P3 soln      |
|---------|----------------------------|--------------|--------------|--------------|
|         | 1 3-BPM fit<br>2 3-BPM fit | 3.01<br>1.49 | 0.61<br>0.79 | 0.61<br>0.80 |
| BOTH    | 2-on-1 pairwise            | 0.39         | 0.67         | 0.40         |
|         | 1 2 DDM fit                | 2 20         | 0.70         | 0.70         |
|         |                            | 3.30         | 0.70         | 0.70         |
| 4       | 2 3-BFIVI III              | 2.20         | 0.77         | 0.78         |
| BOTH    | 2-on-1 pairwise            | 0.39         | 0.53         | 0.36         |



## LO phase scans example (02/12/11)







## LO phase scans (Nov-Dec summary)



# ATF Damping Ring Multi-bunch Diagnostics





Modified feedback hardware for multi-bunch turn-byturn DAQ from ATF damping ring

- Up to 3 bunches,3 channels, from up to 2 BPMs
- Records 131,071 samples per pulse (up to 15% of damping period for single bunch, single channel)
- Can record to n-turns-in-m to vary time window and resolution

#### Nov 2011

### Bunch phase oscillations at extraction wrt LO



5-15 kHz BPF 0.03 0.025 0.02 0.015 0.01 0.005 -0.005 -0.01 -0.015 -0.02 L 0 10000 12000 2000 4000 6000 8000

3 distinct frequencies:

10.8 kHz - synchrotron

434 Hz slow oscillation (unknown)?

735 kHz fast oscillation - aliased?

#### Last 200 turns before extraction



# BPM/LO correlations (1000 pulse parasitic dataset 13/12/11)



## Original residuals – drift subtracted (1000 pulse parasitic dataset 13/12/11)













100

50

-1.5

-0.5

0.5

0

Size of Residuals /µm

# Resolution residuals – LO phase jitter subtracted + drift removal





100

50

-0.5

0

Size of Residuals / um

0.5

# Resolution residuals – LO phase jitter subtracted + drift removal



# Mitigating against bunch phase jitter wrt LO

- Understand why see good correction at FB control BPMS but not witness BPMs
  - FB system will couple relative phase jitter back into the beam (e.g. synchrotron motion turns into vertical beam jitter)
- Mitigation options
  - 1. Remove effects (eg synchrotron motion) in DR
    - Feed-back/forward on beam in DR Hard
  - 2. Immunise against effects in DR
    - Feed-forward on the LO to track the bunch phase Easier
  - 3. Subtract the phase jitter from position data OFFLINE, and correct the feedback signal ONLINE
    - Conceptually even easier, OFFLINE already done, ONLINE requires firmware mods (being tested)
    - Proposed solution in first instance



## Summary

- Feedback performance determined by three quantities: bunch-tobunch correlation (beam), resolution (processor), and gain (system)
- Over the past year or so spent a lot of time and effort in understanding and mitigating effects limiting resolution
  - Minimising processor sensitivity to LO phase jitter optimising the path lengths to hybrid
  - Reducing ADC noise pickup timing jitter on ADC clocks
  - Removing BPM sensitivity to phase jitter
    - Now see very good resolution ~400 nm, in all BPMs, and perfect agreement between machine model and fitting beam trajectory
- Feedback goal has been to reproduce excellent correction previously seen in P2 at P3 also, and maintain this correct downstream
  - Very good results obtained for P2,P3 (down to ~500-600 nm) correction factor 3-5, but in general not preserved at witness BPMs
  - Should be able to see better downstream corrections from the removing the phase sensitivity of the BPMs in the feedback correction.

# Spares

# BPM processor resolution and FB performance limitations

- Standard 3-BPM resolution method gives 'average' resolutions of 1

   2 micron across 3-BPM system, however FB system performance
   in P2-K1 loop show ~300 nm.
  - Believe we were lucky with processor at P2, and that all processors have different resolutions due to different sensitivity to LO jitter
  - Largest effect due to path length imbalance to hybrid (unique for each processor) – larger residual from subtraction, more susceptible to LO jitter
  - All processors optimised, to be tested in Autumn
- Even if resolution 'perfect', system performance still determined by beam jitter conditions
  - Measured bunch-to-bunch correlations of >94% needed to make useful correction on ~3 micron beam jitter (50 % needed to break even)
  - Bunch 3 assumed to be on edge of ~310 ns EXT kicker pulse

### Feedback examples (14 Dec 2011)

Run5\_141211













## Latency (Dec 2011) – not-optimised



## Kicker K1 gain scan (14/12/11)



# Kicker K2 gain scan (14/12/11)



# Original residuals (1000 pulse parasitic dataset 13/12/11)











