

European Organization for Nuclear Research

Air cooling and mechanical support of the CLIC_ILD vertex detector and inner tracking system

F. Duarte Ramos

May 21st, 2012

Similar designs

2

Similar challenges

3

Low material budget (CLIC_ILD: <0.2% X/X0 per double layer in VXB) Proper sensor cooling High dimensional stability Integration & cabling Assembly

Use of light materials Air cooling Maximization of stiffness Minimization of loads

Integrated design approach:

Cooling, support and cabling must be treated as one single problem.

Air delivery

4

Double wall conical beampipe

CLIC CDR: thickness=4mm SST Proposed: thickness=1mm* SST +10mm gap+3mm* SST

*Exact value will depend on beampipe strength calculations

Air delivery

A rotating flow improves the heat transfer and allows to cool both VTX barrel and endcaps with a single air stream

Air delivery

"No" extra material needed for the cooling (ducts, pipes, etc.).

Air delivery

Air supply through double wall conical beampipe

VTX barrel ladder support

Low material budget
Proper sensor cooling
High dimensional stability
Integration & cabling
Assembly

VTX barrel ladder support

High dimensional stability

N.B.: Ladders not yet included

VTX endcaps/SIT1 support

VTX endcaps/SIT1 support

11

FEM boundary conditions

346 W

N.B.: Barrel layers 1 & 6 not yet included

Air temperature

Si temperature

Inner and forward tracking cooling 🌗

Cabling

✓ Cabling

Assembly sequence

Summary

 VTX detector design must cleverly solve support, cooling and cabling issues in an integrated way;

 Current design proposal has taken into account some of those issues (ongoing work);

• Air cooling seems feasible but vibration is still an unknown variable (to be checked experimentally);

 Proposed solutions need to be checked against their impact on physics.

European Organization for Nuclear Research

Thank you