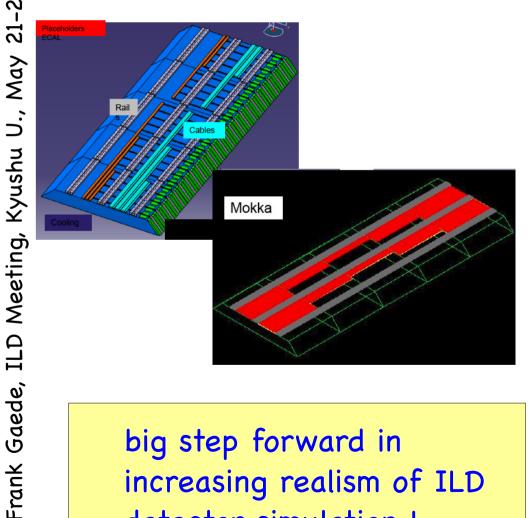
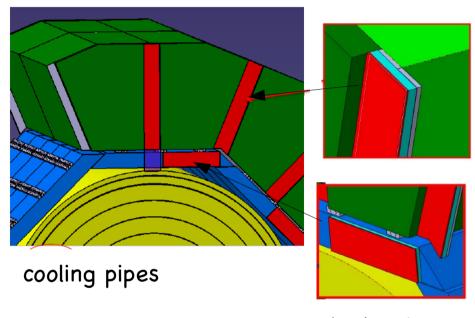


Status of the ILD simulation models

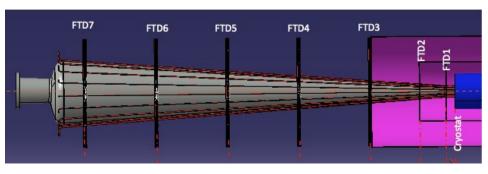
Frank Gaede, DESY
Software pre-meeting @ ILDMeeting
Fokuoka, Japan, May 21, 2012


new Mokka post-LOI ILD models:


- major rewrite of some sub detector drivers :
 - SIT, SET, ETD FTD Muon
 - increased level of detail and realism (incl. services)
- made existing drivers more realistic:
 - TPC, AHCal, Ecal, FCal,...
- new drivers (technology options):
 - SDHCal, SciEcal
- added overall services and cables
- new models for DBD:

```
ILD_O1_v03 "ILD simulation reference Model for DBD using Analog HCal"
ILD_O2_v03 "ILD simulation reference Model for DBD using SD HCal"
ILD_O3_v03 "ILD simulation reference Model for DBD using SciW Ecal and Analog HCal"
```

- first part ILD_OX read "ILD Option X", refers to the choice of subdetector technology options of the model
- second part _vxx refers to the software release version that describes this option for ILD

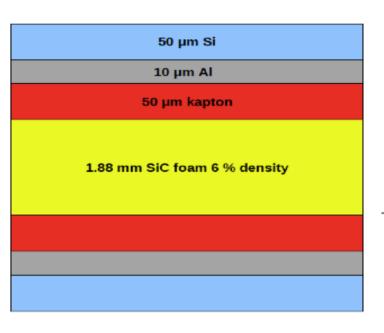

including inner detector services as defined by R&D groups

electronics

big step forward in increasing realism of ILD detector simulation!

power supply cables

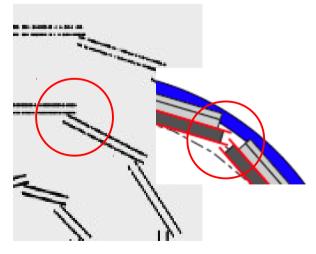
validation of Mokka ILD model(s)


- started validation process with volunteers nominated by the subdetector R&D groups, checking the Mokka drivers for:
 - overlaps, consistency w/ engineering model, hit production,...

detector	person
VXD	G.Voutsinas
SIT/SET	K.Androsov
FTD	J.Duarte
TPC	S.Aplin
ECal	D.Jeans
AHCal	Sh.Lu
SDHcal	G.Grenier
FCal	A.Rosca, B.Pawlik
Muon	A.Saveliev

start MC production, once all sub detectors are 'approved'

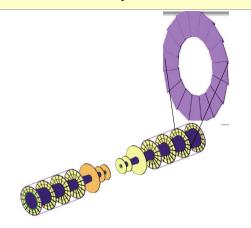
overall overlap checking: Ch.Grefe

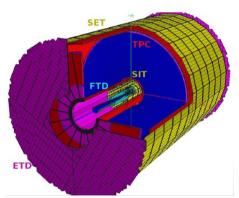

VXD validation

- 0.053 % x 2 +
- 0.011 % x 2 +
- 0.018 % x 2 +
- 0.130 % =
- 0.294 % X_0 per double layer

simplified in GEAR:

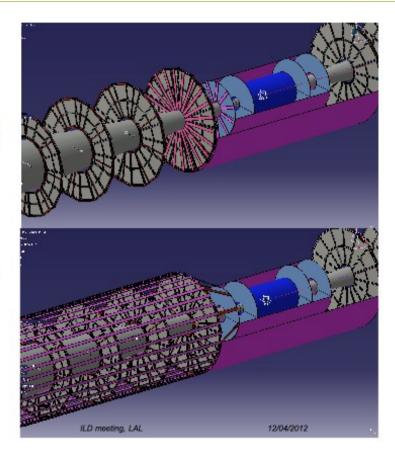
- 0.2% XO support
- + 0.1% XO sensitive
- = 0.3% X0 total


- inconsistency in geometry detected
- potential impact on track finding
- => fixed by Yorgos
- => VXD is validated


SIT/SET& FTD K. Androsov, J. Duarte

- very detailed new simulation models had been developed for SIT/SET as well as for the FTD (ETD is not in simulation models)
- these models did not quite reach the level of maturity one would need for the DBD mass production
- slightly simplified have been developed in parallel in order to proceed with new C++ tracking code
- these models have planar wafers, ~realistic
 support material and work with new tracking
- have now been validated by R&D groups

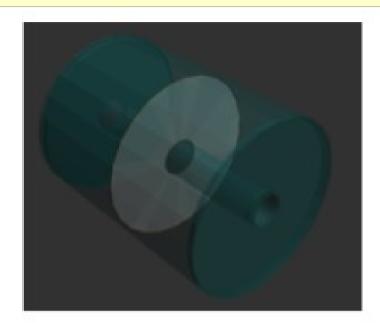
=> FTD validated

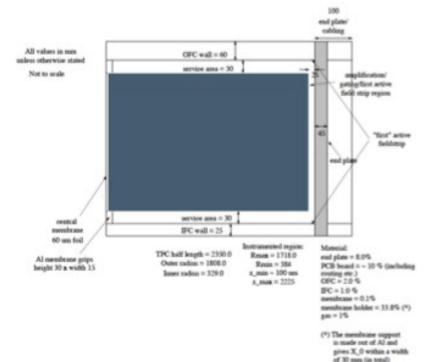


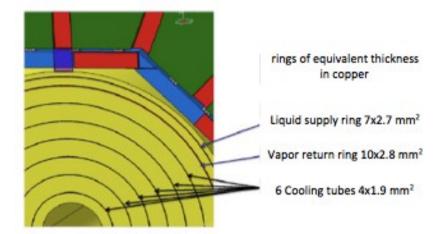
routing of SIT/FTD cables

SIT, two solutions

- Along the beampipe: they have to run on backside of FTD2 and 3, then:
- huge amount of material around BP
- Material in front of the other FTD
- Run along the inner radius of TPC


- need to finalize the numbers as proposed by C.Clerc
- question of routing:
 - along beam pipe !?
 - cables going out to SIT/SET missing ?


erc c.cler


	Aluminum								
	position	FTD7	FTD6	FTD5	FTD4	FTD3	FTD 2	FTD 1	VTX
nou values	eq Th of Al ı	0,85	0,99	1,22	1,54	2,18	2,76	2,00	0,67
new values	X0% FCPPD	0,95%	1,11%	1,37%	1,73%	2,45%	3,10%	2,25%	0,75%
old values	eq Th of Al r	2,16	2,39	2,74	3,20	4,12	3,45	2,00	0,67
oid values	X0% FCPPD	2,43%	2,68%	3,08%	3,60%	4,63%	3,87%	2,25%	0,75%

TPC validation

S.Aplin

End-Plate modeled as discs of material representing components of the readout: GEM structure, Readout, and Support frame.

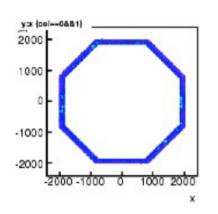
Cathode constructed from two thin discs, insulator and conductor, held by membrane grip.

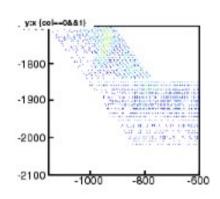
Cooling modeled using rings attached to the outside of the end-plate.

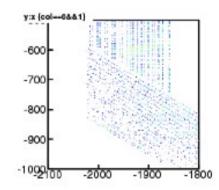
Parameterised digitisation well established in the main reconstruction chain.

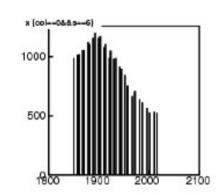
=> TPC is validated

2012 21-25, May ILD Meeting, Kyushu


Frank Gaede,


SiW Ecal validation


Engineering design dimensions:


Barrel: Rin=1843, Rout=2028, 1/2 length=2350

Endcap: Rin = 400 (square), Rout=2090 (octogon), Zin=2450, Zout=2635

StepLeng NextVolume

0 WorldPhysical

3 BarrelEcalModule

2.45 FirstSlab

0.25 PCBCuShield

pcb 1.3 FirstSlab

0.1 WaferSi

0.5 Ground

0.1 BarrelEcalModule

0.15 RadiatorSlab

v 2.1 BarrelEcalModule

f 0.15 Ground

0.1 WaferSi

0.5 SecondSlab

0.1 PCBCuShield

pcb 1.3 SecondSlab

0.25 BarrelEcalModule

f 0.75 RadiatorStruct

v 2.1 BarrelEcalModule

cf 0.75 FirstSlab

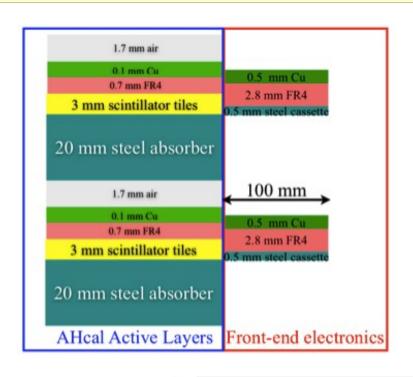
0.25 PCBCuShield

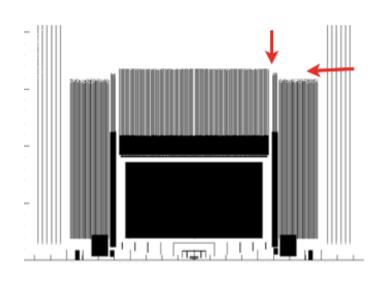
pcb 1.3 FirstSlab

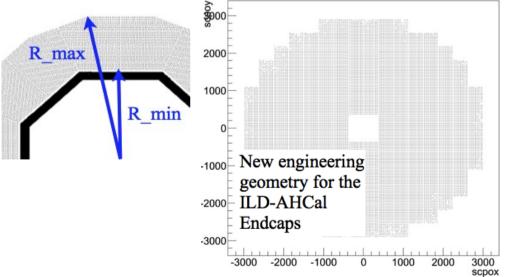
0.1 WaferSi

Conclusions

Hit positions consistent with engineering design

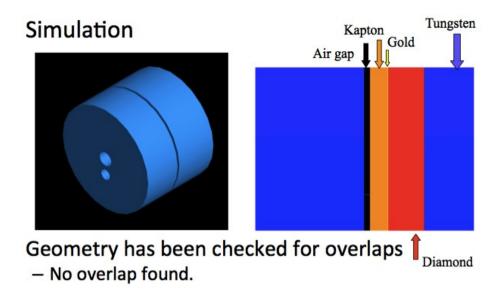

Decoded CellID behave as expected

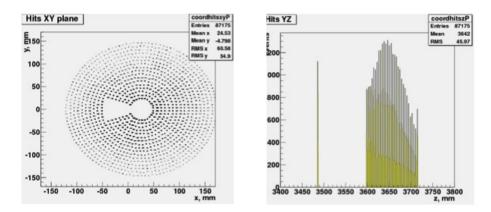

No problems detected in ECAL structure (geantino)


=> Ecal is validated!

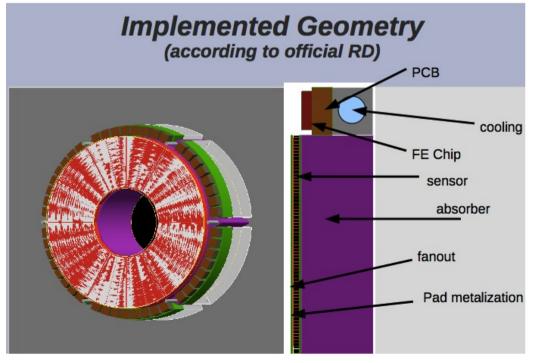
AHcal validation

Sh.Lu

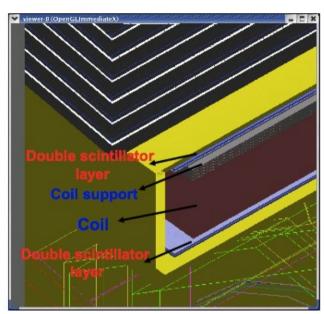

The Mokka drivers for the Barrel and the Endcap have been validated and synchronized with engineering design.


EndcapRing has been checked with engineering design too.

=> AHCal is validated


Fcal validation

A.Rodca, B.Pawlik


 Z_{in} = 3450 mm in the engineering design and ~3600 mm in the simulation.

- different z-pos was just a proposal
- -> decided to keep value in simulation eng. model
- => BCal validated
- => LCal validated

Muon validation

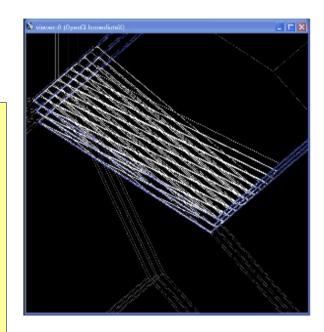
V. Saveliev

Cryostat: Detailed Geometry

- Instrumentation 2 Double Scintillator Layers -> no baseline

Coil: Detailed Geometry,

- Coil Segmentation


-> remove from sim. model

Yoke: Detailed Geometry based on Mechanical Design

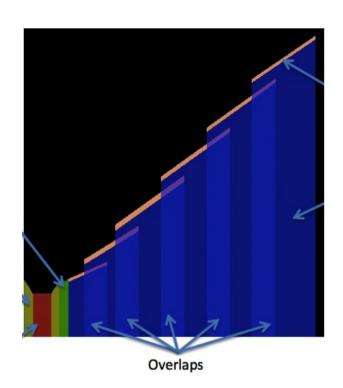
- Barrel: 10x(100+40) +3x(560 +40) mm
- EndCup: 10x(100+40) +2x(560+40) mm

- 3x3cm scint. tiles <- used in LOI & Pandora
- 3x3cm RPC <- implemented in ILD_O1
- 3xLcm scint. strip stereo <- proposed
- => need decision asap !!

=> muon validation ongoing

Overall Overlap checking Ch. Grefe

/geometry/test/recursive_test


Gives detailed printout with coordinates of

overlaps:

	GeomTest Error: Overlapping daughter volumes The volumes tube_IPOuterBulge[0] and tube_IPOuterBulge[0], both daughters of volume WorldPhysical[0],							
	appear to overla				coordinates:			
							position (cm)	
	16.45	0	0	37.13	0	0	53.58	
	Which in the mo	ther coordin	ate sys	tem is:				
	length (cm)	star	positio	n (cm)		end p	position (cm)	
	16.45	0	0	37.13	0	0	53.58	
	Which in the cod	ordinate syst	em of t	ube_IPOuter	Bulge[0] is:			
	length (cm)	star	positio	n (cm)		end p	position (cm)	
	16.45	0	0	-1.16	0	0	15.29	
	Which in the cod	ordinate syst	em of t	ube_IPOuter	Bulge[0] is:			
	length (cm)	star		n (cm)		end p	position (cm)	
	16.45	0	0	-21.91	0	0	-5.46	
-								

Careful: can be false positives / false negatives
Still the best starting point

- World volume to small fixed
- SIT overlaps with FTD fixed
- Overlapping sensors in SIT and SET fixed
- Overlaps in FTD fixed
- Insulators overlap in TPCCathode (fixed
- Overlaps in tube_IPinnerTube (fixed
- Overlaps in tube_IPOuterBulge fixed
- YokeEndcap overlaps YokePlug fixed
- Overlaps in HCalServices fixed
- Chamber1 and Chamber2 overshoot YokeEndcap

=> ILD_O1_v03 should
be free of overlaps

validation of Mokka ILD model(s)

- started validation process with volunteers nominated by the subdetector R&D groups, checking the Mokka drivers for:
 - overlaps, consistency w/ engineering model, hit production,...

detector	person	status
VXD	G.Voutsinas	done
SIT/SET	K.Androsov	done
FTD	J.Duarte	done
TPC	S.Aplin	done
ECal	D.Jeans	done
AHCal	Sh.Lu	done
SDHcal	G.Grenier	to be done
FCal	A.Rosca, B.Pawlik	done
Muon	A.Saveliev	ongoing

start MC production w/ILD_O1_vxx a.s.a.p.

- finalize muon readout
- finalize SIT cabling
- ... ?

overall overlap checking: Ch.Grefe

Summary & Outlook

- ILD simulation models in Mokka have been made more realistic wrt. to the version that was used for the LOI:
 - added electronics, cabling and services
 - introduced wavers and support for Si-Tracking
- R&D groups have nominated people to validate the corresponding drivers -> almost complete now
- now known (major) discrepancy known between the simulation and the engineering models
- --> will start Monte Carlo production for DBD soon