

KiTrack and ForwardTracking

Track Reconstruction Packages for the FTD

Robin Glattauer ILD Workshop Software Pre-Meeting 22.05.2011

22 May 2012

Robin Glattauer: ForwardTracking

The Forward Region

FTD 0,1 : pixel detector FTD 2-6 : dual layer strip detector

The Packages

ForwardTracking

- Depends on KiTrack and KiTrackMarlin
- Reconstructs tracks through the FTD
- For all tracks with
 - pT > 100 MeV
 - 4 hits or more in FTD (needed for fitting)
- Parallel to SiliconTracking
- Tracks combined by TrackSubsetProcessor

TrackSubsetProcessor

- Situation: tracks reconstructed by multiple packages with different algorithms
- Which ones to take? Not all are compatible
- TrackSubsetProcessor creates one track collection with completely compatible tracks
- Aim: Maximize quality of tracks
- Uses the Hopfield Neural Network from KiTrack

Robin Glattauer: ForwardTracking

KiTrack + ForwardTracking: The Main Methods

- Cellular Automaton: find tracks
- Kalman Filter: fit tracks, gain quality indicator and sort out
- Hopfield Neural Network: find a compatible subset
- Alternative methods possible for every step

Cellular Automaton

- Use as much information as possible
- As early as possible:
 - When could 2,3,4 hits belong to a true track?
 - Start with 2 hits and sort out in every step
 - Do the segments form a possible track, i.e. are they connected? (e.g. to the IP)
 - Only when this is finished use time consuming methods like the Kalman Filter

Cellular Automaton: example for a criterion to apply on two hits

Cellular Automaton: Recent Developments

 Deal with "overdose" of hits: rerun Automaton with different parameters → tighten the cuts

(not yet committed)

Cellular Automaton: Recent Developments

• Taking care of p_T dependencies

Kalman Filter

- KalTest + KalDet + MarlinTrk
- Use χ^2 probability as quality indicator
- Make a cut at 0.005
- Faster to use additional prefilter like helix fit,
- Needs more investigation (effect on efficiency)

Hopfield Neural Network

- Goal: find compatible subset
- Hit sharing tracks mainly from combinatorial background → incompatible

• Now a template class

Results

- See talk on Thursday
- Promising, but needs more fine tuning
- Efficiency: good, but:
 - Drop in efficiency for high p_T needs resolving
 - Intermediate region

Possible Further Improvements

- More sophisticated steering
- Alternative and additional algorithms at each stage
- Flexible acting

Thank you!

22 May 2012

Back Up

22 May 2012

Regions

22 May 2012

Robin Glattauer: ForwardTracking

