Simulation of a TPC Pixel Readout with MarlinTPC

Martin Killenberg

ILD Meeting 2010 — LCTPC Pre-Meeting Fukuoka, Japan, 22. 5. 2012

Overview

Simulate a full ILD TPC with InGrid-like pixel readout

Detect every primary electron

- Ultimate spatial resolution
- Best possible track separation (only limited by diffusion)
- Reject delta electrons \Rightarrow improve dE/dx and momentum resolution

Planned Studies:

- Occupancy at CLIC
 - Full CLIC bunch train of beam background
 - + Does not require reconstruction
 - Uses lots of memory
- Momentum resolution, dE/dx
 - Use single muons
 - Need to cut delta electrons
 - Cluster counting: needed?
- Tracking efficiency
 - Requires full pattern recognition

Simulation and Digitisation

- Simulate primary ionisation clusters (Mokka \checkmark)
- Drift individual electrons (DriftProcessor √)
- Overlay voxels in memory (not implemented yet)
- InGrid-like "TPCPix" readout (new: TPCPixDigitisationProcessor ✓)
 - The "ideal" readout chip
 - Integrated micro mesh \checkmark
 - $\bullet\,$ Time and charge information per pixel $\checkmark\,$
 - Fast shaping time (like internal ADC per pixel) \checkmark
 - Unlimited multi-hit capability √
 - Currently perfect end plate, no individual chips \checkmark

For more realism:

- Polya-like gas gain fluctuations (not implemented yet)
- Adjustable cross-talk between pixels (10 %) (not implemented yet)

No pattern recognition for pixel readout

- Current Kalman-Filters work layer (pad row) based
- Hough-transform does not work (too many pixels)

Current solution for single tracks without background and noise

- Fit a helix to all recorded pixels
- Treat all pixels equally (digital readout, charge information not used)
- Perform outlier rejection (delta electrons) \rightarrow cut at 2.5 RMS of residual distribution
- Iterate

Event Displays

Binning in z due to 40 MHz readout frequency $\stackrel{\scriptscriptstyle }{=} 2 \text{ mm}$ drift distance

Peaks are due to z binning in micro curlers

Residuals in xy vs. r

Bad Fit

Cutting outliers does not always work...

- Energy loss (not a perfect helix)
- Multiple scattering

1000 muons from the IP

• Slight shift to positive values \Rightarrow measured momentum is too large

• Slightly better than resolution for pads($\sigma(\Delta \rho_T/\rho_T^2) = 7.5 \cdot 10^{-5}$ @200 GeV) 1 × 6 mm² pads, Mokka driver in default mode + MarlinReco / LEPTracking

Summary

- Digitisation for TPC pixel readout
- Helix fitting works for single tracks
- Outlier rejection removes most of the delta components

Results

- Deviation from helix due to multiple scattering in the field cage and energy loss
- Perfect helix is a good approximation inside the TPC
- Momentum resolution reaches $\sigma(\Delta p_{\rm T}/p_{\rm T}^2) = 7.3 \cdot 10^{-5}$
- To be understood: Why is the reconstructed momentum too large?

Next steps

- Implement gas gain fluctuations and cross talk
- Look at dE/dx
- Occupancy study
- Pattern recognition = ???

Backup

Comparison with Pad Size

Residuals for 1000 muons

Residuals for 1000 muons

