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Cavity Field Control  
- RF Signal Detection and Actuation 
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Outline 

• Requirements to RF field detector 

• RF field detection methodology 

• Reduce the noises and compensate the drifts in RF 
field detection  

• RF actuation 

• Appendix 

– Typical hardware for RF field detection  
• Mixer 

• Analog to Digital Converter (ADC) 
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Requirements to RF Field Detector 
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Context of the RF Field Detector 
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Recall: Transfer Function from Detector Noise to 

Cavity Field 
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• Low frequency noise of 

detector is transferred 

directly to the cavity 

output; high frequency 

noise is filtered by 

closed loop bandwidth 

and detector bandwidth 

• Reducing the detector 

noise will be essential to 

get highly stable cavity 

field! 
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Requirements to the RF Field Detector 

• The requirements of the RF field detector should be 

derived from the overall requirements to LLRF system 

• Functional requirements: detect the amplitude and 

phase of RF field for each cavity in real time 

• Quality requirements:  

– Field detection bandwidth 

– Amplitude and phase error 

– Non-linearity 

Example for FLASH: 

• Field detection bandwidth: 10 MHz 

• Amplitude and phase error: < 10^-4 

• Non-linearity: at full scale of the measurement, the amplitude compression 

should be less than 1% and phase shift should be less than 0.5 degree 
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RF Field Detection Methodology 
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Direct Amplitude and Phase Detection 

• Simple system structure 

• Linear for small phase errors 

• Phase measurement is influenced by the amplitude error of the 
RF or LO signal 
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Analog I/Q Detection 
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Analog I/Q Detection 

• Phase measurement is linear for the 
whole range of 360º 

• Low efforts of digital processing 

• Disadvantages: 

– Phase and amplitude imbalance 

– DC offset 

Amplitude 

imbalance 

Phase 

imbalance 

DC 

offset 
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IQ Sampling 

• Digital I/Q detection 

• IF and clock signal should be 

synchronized 

• Alternating sample give I and 

Q components of the cavity 

field 
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IQ Sampling at FLASH 
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IQ Sampling 

• Advantages 

– Get rid of the imbalance effect 
compared with the analog I/Q 
demodulator 

• Problems 

– DC offset caused by the mixer 

– Nonlinearities in the analog front-
end or the ADC generate harmonics, 
which will be aliased to the IF 
frequency 
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IQ Sampling 

Vector of 1st 

Harmonic

Vectors of 

Aliased 

Harmonics

Measured 

Vector of 1st 

Harmonic

• The phase of nth harmonic changes 

n times faster than the fundamental 

phase 

• Phase shifts in the cavity due to 

microphonics and Lorenz force 

detuning will lead to a time 

dependent error 

A 
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Non-IQ Sampling 

• Compared with IQ sampling, non-IQ sampling is aimed to avoid the 

harmonics aliasing by shifting the sampling frequency slightly from 

4 times of the IF frequency 

 2
n

m

Example: m=4, n=15 
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Non-IQ Sampling 

• Fourier series decomposition of the RF signal 

 

 

 

 

 

 

 

 

 

 

• Demodulation algorithm: 
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Non-IQ Sampling 

• Most harmonics no longer line up with IF frequency. Influence 

due to the higher order harmonics and DC offset can be 

reduced with band pass filter. 

• The algorithm for demodulation need more computation power 

and will cause larger latency 
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Direct Sampling 

• Example for available ADC: ADS5474, 14 bits, 

400MSPS, 1.4GHz bandwidth 

• Under-sampling 

• Non-IQ sampling (m,n have the same meaning as the 

discussion of non-IQ sampling) 
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Direct Sampling 

• Advantage: no down converter needed 

• Essential problems: ADC measurement noise is sensitive to the 
clock jitter due to the high input RF frequency 

 
rmsjitterRFjitter tfSNR _10 2log20 
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Digital Down Conversion 

• Principle same as analog I/Q demodulator 

• NCO: Numerical Controlled Oscillator 

• Digital mixer: multiplication operation in 
processors (in FPGA can be multiplier 
cores) 

• Digital low pass filter, can be IIR, FIR or 
CIC filter 
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Reduce the Noises and Compensate 

the Drifts in RF Field Detection 
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Noise and Drift Sources for RF Detection 

• Slow phase and amplitude drifts:  

– Cavity pick up cables  

– Down converter 

– LO low frequency phase noise 

• Fast phase and amplitude jitters: 

– Thermal noise 

– LO high frequency phase noise 

– ADC noise 
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Reduce the High Frequency Noise 

• Select components of 

down converter with 

low noise level 

• Filtering in RF side 

• ADC oversampling 
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Drift and Fluctuation Correction 

Reference tracking 
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Drift and Fluctuation Correction 

Measurement chain drift calibration 
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RF Actuation 
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RF Actuator 

• Change the amplitude and phase of RF driving signal 

and perform frequency up-conversion  

• Widely used solutions: 

– Direct up-conversion 

– IF up-conversion 

– Single sideband up-conversion 
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Direct Up-conversion 
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• Easy to implement 

• Suffer from the DC offset in I/Q base band signals 

and the phase and amplitude imbalance of the vector 

modulator 
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IF Up-conversion 

• Band pass filter after the DAC can remove the DC offset 

• Band pass filter after the mixer is necessary 

• If IF is small, filter design will be critical 
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Single Sideband Up-conversion 
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Summary 

In this part, we have learnt: 

• Principles and characteristics of several RF field detection methods 

• Ideas to correct the noise and drift of the RF field detector 

• Principles for several RF actuation (up-conversion) methods 
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Appendix: 

Typical Hardware for RF Field 

Detection 
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Mixer 



S. Simrock & Z. Geng,  6th International  Accelerator  School for Linear Colliders,  USA,  2011  35 

Mixer 
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Mixer 
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Mixer 
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Analog to Digital Converter 

What is an ADC? 
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Analog to Digital Converter 

Least Significant Bit (LSB) and Most Significant Bit (MSB) 



S. Simrock & Z. Geng,  6th International  Accelerator  School for Linear Colliders,  USA,  2011  40 

Analog to Digital Converter 
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Analog to Digital Converter 

ADC noise source: Quantization noise 
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Analog to Digital Converter 

ADC noise source: Clock jitter 

 
rmsjitterRFjitter tfSNR _10 2log20 
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Analog to Digital Converter 

ADC noise source: Noisy components or circuitry 
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Analog to Digital Converter 

Signal to Noise Ratio (SNR) of ADC: 
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Analog to Digital Converter 

Differential Non-Linearity (DNL): “small scale” code to 

code errors 
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Analog to Digital Converter 

Integral Non-Linearity (INL): “large scale” overall transfer 

function error 


