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Outline 

• Introduction to the LLRF Applications 

• Examples: 
– System Identification 

• Grey box model identification 

• Black box model identification 

– System Calibration 

• Beam based vector sum calibration  

• RF field calibration for RF gun without probes 

– Parameters Optimization 

• Adaptive feed forward 

– Exception Detection 

• Quench detection 
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Introduction to the LLRF Applications 
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Challenges for RF Control 

• Challenging topics: 
– Vector sum calibration (amplitude & phase) 

– Operation close to performance limits 

– Exception detection and handling 

– Automation of operation 

– Optimal field detection and controller (robust) 

– Reliability 

• Sophisticated algorithms and application software are 
necessary for RF control of a large scale accelerator, 
such as ILC and XFEL 
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Category of the LLRF Applications 

• System identification 

• System calibration 

• Parameters optimization 

• Diagnostics 

• Operation support 

• Exception detection  

• Exception handling 

• … 
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Context of LLRF Applications 
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System Identification 
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RF System Identification 

• System identification 

– Build mathematical models of the RF system based on 

measured data from the system, the results may include 

• Mathematic description of the input/output dynamics 

• System parameters such as QL, detuning, system gain, loop 

phase, non-linearity of the klystron and field detector … 

• Use cases of the RF system model 

– Controller parameter optimization 

– Diagnostics 

– Predict the system response 

– Estimate the required system input for desired output        

(adaptive feed forward)  
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Model for Dynamic System 

• Grey box model 

– system internal structure is described by the physical model 

of the system 

• Black box model  

– system internal structure is not known 
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System Identification 

- Grey box model 
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RF System Grey Box Model 

RF system grey box model: 

    Mathematical description of the system behaviour from 

DAC to Vector Sum based on the cavity equations 
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RF System Grey Box Model 
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System equations for the grey box model (voltage source driven): 

Gray box model contains of elements of: 

• Half bandwidth 

• Detuning 

• Complex gain G 

 

Available measured signals: 

• Vector sum 

• DAC output 

• Klystron output 
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Model Elements Identification 
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Calculate the half bandwidth and detuning: 

Remind the system equations: 

DACklykly VVKG




Calculate the complex gain: 

Appendix 1: 

Vector Sum 

Driving Signal 

Calibration 
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Model Elements Identification 

• From the grey box model, we can see 

– Linear time varying model 

– Detuning changes during the RF pulse due to the Lorenz force 

– System gain and phase change during the RF pulse due to klystron 

non-linearity 

• During the flattop, approximation can be made:  

– Detuning as a linear function 

– Half bandwidth, system gain and phase as constants 
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Summary of the Grey Box Model 

• The grey box identification method works for both the vector 

sum and single cavity 

• Advantages: 

– The grey box model can be identified during normal operation, no 

extra excitations are needed 

– The information provided by the model (detuning, half bandwidth, 

system gain and phase) will be useful for other applications such as 

system parameters optimization, exception detection and cavity 

resonance control  

• Limitations: 

– Only valid around the working point 
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System Identification 

- Black box model 
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Black Box Model 

Input u(t) Output y(t) Black Box 

G 

y(t) = f(G,u(t),y(t)) 

Assumption : System Behavior is unknown 

Question : What is G? How do I get it? 

DAC 

Output 

Vector 

Sum 
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System Model Structure 

MIMO (multiple input multiple output) 

G 
 I 
Q 

 I 
Q 

Here: Using a linear, time-invariant model 

            sufficient for around the working point 
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System Identification Steps 

• Excitation of the system by treating the system with 

“noisy” input signals  

• Measuring the system response to this input 

sequence 

• Fit a model from this input / output data, to find a 

mathematical system description 

• Validate the model by comparing simulations with 

measured system data 

• Model represents system dynamics without having 

any information about detailed inside. 
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Exciting System Input at Working Point 
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Model Validation with Measurement 
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Summary of the Black Box Model 

• Advantages 

– No a-priori system information is needed 

– Input / Output behavior models the full system containing all 

subsystems. 

– LTI models can be used for nearly all control system 

applications to find the optimal controller.  

• Limitations 

– Physical background of the system stays dark 

– Every working point needs a new model 
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System Calibration 
- Beam Based Vector Sum Calibration 
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Required Calibration in LLRF System 

• Vector sum calibration 

• Gradient and phase (respect to beam) calibration for each cavity 

• Forward and reflected power calibration for each cavity 

Beam is a good 

reference for the 

calibration. 
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Beam Transient Measurement 

• Open loop operation 

• Beam induced transient in each 

cavity field can be measured by 

comparing the cavity field 

waveforms without/with beam 
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Cavity RF Calibration 

• Cavity gradient and phase calibration 

• Incident (forward) power calibration 

• Reflected power calibration 
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Vector Sum Calibration 

• Assumptions:  

– All cavities have the same r/Q 

– Lossless beam 

• The absolute values of the beam induced voltage and its phase 

should be the same for all the cavities, so if the vector of the first 

cavity acts as reference, the rotation gain and rotation angle of the nth 

cavity are 

nindindnrot

nind

ind

nrot

VV

V

V
g

,1,,

,

1,

,


















S. Simrock & Z. Geng,  7th International  Accelerator  School for Linear Colliders,  India,  2012  30 

Vector Sum Calibration at ACC1 of FLASH 
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IF Vector Sum Calibration Has Error… 
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Effect of Vector Sum Calibration Error 
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System Calibration 
- RF Field Calibration for RF Gun 

without Probes 
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RF Gun at FLASH 
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RF Gun at FLASH 

• Pulse length: up to 800 μs  

• Pulse repetition: up to 5 Hz  

• High RF field: 40 MV/m  

• Phase stability: 0.5 degree  

• Resonance frequency is sensitive to the cavity wall temperature 

(0.1 deg temperature change corresponds to 2.1 deg in RF phase)  

• No probe installed for better cooling and field symmetry 
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RF Gun Control 

• Probe is missing, so 

– Cavity field can be calculated from the forward and reflected signals 

– Calibration is needed because of 

• Unknown phase offset and attenuation by the measurement chain 
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Probe Calibration 

• The relation between cavity voltage, forward and reflected signals is 

 

 

• The true forward and reflected signals can be estimated from the 

measurement, the coefficients m and n are complex number which need to 

be calibrated  
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Cavity Equations for RF Gun 

• Calibration is done with feed forward mode (no feedback) and no beam 

• RF gun employs normal conducting cavity, so use the general equation 

 

 

• RF gun cavity has a small time constant, so we can examine its steady 

state equation  

 

 

• Use the formula of 

 

 

• We get the basic description of the RF gun cavity 
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Cavity Resonance Circles 

• The reflection factors form a circle in the complex plane with detuning changes 

• All resonance circles pass the point of (-1, 0) regardless of the coupling factor when 

the detuning approaches the infinity (means complete reflection) 
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• The measured reflection factor 

 

 

 

 

• When detuning approaches infinity 
(maximum reflection), the relative 
coefficient can be calculated as 

 

 

 

 

• It is not possible to detuning the cavity to 
infinity, but the reflection factor at infinite 
detuning can be estimated by fitting the 
resonance circle (detune the cavity with 1 
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Methods to Detune the RF Gun Cavity 

• Change the temperature of the RF gun cavity 
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Methods to Detune the RF Gun Cavity 

• Phase modulation of the feed forward signal 
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Gun Calibration at FLASH 

n/m = A2*exp(jφ2). 
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Parameters Optimization 
- Adaptive Feed Forward 
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Adaptive Feed Forward 

Optimize controller’s feed forward tables 

• Compensate the repetitive errors of the system 

• Adapt the feed forward table for new working point setting 
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Adaptive Feed Forward 

Solutions: 

• Time reversed filter 

• Inversed grey box model 

• Iterative learning control based on black box model 
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Time Reversed Filter 

Idea: FFnew = FFlast + FBlast 

         FB is filtered by a time reversed low pass filter 
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Time Reversed Filter 
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Time Reversed Filter 

Test at ACC1 of 

FLASH:  

no beam 

Test at ACC1 of 

FLASH:  

beam loading 

compensation 
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Inversed Grey Box Model 
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Grey box model in closed loop: 
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Inversed Grey Box Model 
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Correct the feed forward based on vector sum error: 
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Iterative Learning Control 

• L can be any Filter function (time reversed low pass,…) 

• Here L depends on Black box model parameters  

• Norm-Optimal Iterative learning control 

Idea: Use information from previous trails to     

         improve the FF signal for upcoming pulses.  

kkk Leuu  1
k – trial number  

u – system input (FF) 
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RF – Field During Adaptation 

Removed all deterministic effects like: 

Beam loading, Lorenz force detuning and overshoots 
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Beam Loading Compensation 

Beam induced transient  
without Iterative learning on 

Only stochastic  
fluctuations left 
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Measured Beam Energy Spread   

Field adaptation minimizes energy spread! 
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Animation of Adaptation 
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Exception Detection  
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Exception Detection and Handling 
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Examples for LLRF Exceptions 
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Exception Detection 

- Quench Detection 
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Motivation for Quench Detection 

• Cavity quench can cause unstable RF field or even beam loss, and 

increase the cryogenic heat load 
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Method for Quench Detection 

• Monitoring the cavity gradient drop (gradient drop can also be 

caused by detuning or beam loading) 

• Measure the loaded Q of each cavity, if the loaded Q drops 

larger than the threshold, quench event will be generated 

• Loaded Q can be measured with the grey box system 

identification algorithm 
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Test at ACC1 of FLASH 
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Test at ACC1 of FLASH 

Loaded Q measurement during RF flattop for each cavity of ACC1, the 

curves for each cavity means 14 times measurement with different set 

point gradient (from 9.3MV/m to 10.6MV/m, 0.1MV/m as increment steps) 
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Test at ACC1 of FLASH 

Loaded Q measurement of cavity No.2 at ACC1 during the RF pulse 

with different set point gradient 
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Summary 

In this part, we have learnt that LLRF application software is important 

to support the LLRF system to reach performance specifications and 

be more robust. 

Several examples for system identification, parameters optimization, 

system calibration and exception detection are introduced. 

The functionalities that the applications should perform will strongly 

depend on the requirements to LLRF system, especially from the 

operation point of view. 
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Appendix 1 
- Vector Sum Driving Signal Calibration 
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Vector Sum Driving Signal Calibration 

• The vector sum driving signal can be calculated by the 

measurement of the klystron output 

• A complex coefficient is used to calibrate the gain and phase 

error caused by the unknown signal path 

 

 

 

• Calibration steps: 

– Measure the half bandwidth and detuning at the point just after the 

RF driving signal is switched off  

– Assume the cavity half bandwidth and detuning will not change 

around the point when the RF driving signal is switched off (subscript 

0 means the values just before the RF off) 
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Vector Sum Driving Signal Calibration 

• The amplitude and phase of the driving signal is always referred 

to the measured amplitude and phase of the vector sum 
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