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REALIZATION AND CANONICAL FORMS 
 
 A linear time-invariant (LTI) system can be represented in many ways, including: 
 

• differential equation (ODE) 
• state variable (SV) form 
• transfer function 
• impulse response 
• block diagram (BD) or flow graph 

 
Each description can be converted to the others.  In the lecture on Mason's Formula we 
saw how to represent systems in terms of block diagrams, and how to determine the 
transfer function of a block diagram system using Mason's Formula. 
 
 In this lecture we shall see how to make a block diagram from a given transfer 
problem.  This is the inverse problem from the one Mason's Formula solves.  Then, we 
shall see how to associate a state-space equation with any block diagram.  The relation 
between SV systems and BD is very transparent since the output of each integrator is a 
state. 
 
 The problem of finding a SV or BD representation given a prescribed transfer 
function is called the realization problem. 
 

BD REALIZATION OF TRANSFER FUNCTIONS IN SERIES 
FORMS 
 
 A transfer function can be realized as a BD in series form or parallel form.  Here 
we introduce two series forms that are very convenient for solving the BD realization 
problem for single-input/single-output (SISO) systems. 
 
 Consider the illustrative third-order transfer function 
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This is a rational function (e.g. a ratio of two polynomials in s).  For realization, it is 
important to ensure that the transfer function is monic, that is, the highest order term in 
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the denominator has a coefficient of 1.  If not, divide through by this coefficient to put the 
transfer function in monic form. 
 
 The transfer function must also have relative degree of 1 or more.  If the relative 
degree is zero (e.g. same power of s in the numerator as the denominator), then divide the 
denominator into the numerator in one step of long division to write H(s) as a constant 
term plus a term whose relative degree is at least one.  The constant term is a direct 
feedthrough term, and the procedures below may be carried out to realize the remainder 
term. 
 
 A transfer function is said to be proper if its relative degree is greater than or 
equal to zero, and strictly proper if the relative degree is greater than or equal to one. 
 

We use a third-order system to illustrate the approach, which works for any n-th 
order rational, monic, strictly proper transfer function. 
 
 To find a BD realization of H(s), divide by the highest power of s to obtain 
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Now think of Mason's Formula.  To draw a BD we can use three feedforward paths and 
three loops if we select the correct transmissions and loop structure. 
 
 We give two series forms that have a convenient structure for realizing SISO 
systems.  Note particularly that Mason's Formula is very easy to use if there are no 
disjoint loops, and all loops touch all feedforward paths.  Then, the determinant ∆(s) is 
simply 1 minus the sum of the loop gains, and all cofactors are equal to one. 
 

Reachable Canonical Form (RCF) 
 
 The rule used for RCF is  
 

feedback to the left 
feedforward to the right. 

 
This means that all feedback loops should join at a summer on the left, and all 
feedforward paths should join at a summer on the right.  A BD satisfying this condition is 
drawn below. 
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 Note that all loops and all feedforward paths have the left-hand integrator in 
common, so all cofactors are equal to 1 and the determinant has no higher-order terms.  
Applying Mason's Formula to this BD gives the transfer function (2).  Determine the loop 
gains and path gains and make sure you believe this. 
 
 Each integrator output is labeled as a state.  The rule used in this course for 
labeling states will be: 
 

Label the states from right to left, from top to bottom. 
 
We will see some examples of this to clarify it. 
 
 With the states labeled as shown, one may write down directly the state equations 
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As an exercise, one may find the transfer function 

DBAsICsH +−= − 1)()(  
 
and verify that it is the same as the one we started with. 
 
 This development gives a very easy way to realize SISO transfer functions in SV 
form.  One notes that it is easy to write down (3) directly from (1) without having to draw 
the BD.  In fact, simply take the denominator of H(s), turn the coefficients backwards, 
make them negative, and place them into the bottom row of the A matrix.  Take the 
coefficients of the numerator, turn them backwards, and place them into the C matrix.  
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 The A matrix in (3) is known as a bottom companion matrix for the characteristic 
polynomial 
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The superdiagonal 1's in A and the lower 1 in B mean simply that the three integrators are 
connected in series. 
 

Example 1.  Realize Transfer Function as RCF SV System 
 
 Let there be prescribed 
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The SV equations are directly written down as 
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Now one may analyze the system including simulation, finding output given an 

input and ICs, etc. 
 

Observable Canonical Form (OCF) 
 
 The rule used for OCF is  
 

feedback from the right 
feedforward from the left 

 
A BD satisfying this condition is drawn below. 
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 Note that all loops and all feedforward paths have the right-hand integrator in 
common, so all cofactors are equal to 1 and the determinant has no higher-order terms.  
Applying Mason's Formula to this BD gives the transfer function (2).  Determine the loop 
gains and path gains and make sure you believe this. 
 
 With the states labeled from right to left as shown, one may write down directly 
the state equations 
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As an exercise, one may find the transfer function 

DBAsICsH +−= − 1)()(  
 
and verify that it is the same as the one we started with. 
 
 This development gives a very easy way to realize SISO transfer functions in SV 
form.  One notes that it is easy to write down (4) directly from (1) without having to draw 
the BD.  In fact, simply take the denominator of H(s), stack the coefficients on end, make 
them negative, and place them into the first column of the A matrix.  Take the coefficients 
of the numerator, stack them on end, and place them into the B matrix. 
 
 Note that this OCF state-space form is not the same as RCF, though both have the 
same transfer function.  In fact, RCF and OCF are related by a state-space 
transformation, which we shall not discuss in this course (it is discussed in EE 5307, 
Linear Systems). 
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 The A matrix in (4) is known as a left companion matrix for the characteristic 
polynomial 
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The superdiagonal 1's in A  and the left-hand 1 in C mean simply that the three integrators 
are connected in series. 
 

Example 2.  Realize Transfer Function as OCF SV System 
 
 Let there be prescribed 
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The SV equations are directly written down as 
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Now one may analyze the system including simulation, finding output given an 

input and ICs, etc. 
 
 

BD REALIZATION OF TRANSFER FUNCTIONS IN PARALLEL 
FORM 
 
 To realize a system in parallel form, one performs a PFE on the transfer function 
to obtain 
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where the poles are at 321 ,, ppps −−−=  and the residues are 321 ,, KKK . 
 
 Now note that a single term of this form can be realized using the simple BD 
shown.  Use Mason's Formula to determine the transfer function to make sure you believe 
this. 
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 The complete transfer function with three parallel paths can be realized as shown. 

 
This realization is known as parallel form.  If there are repeated poles, then the 

transfer function has higher-order poles in the PFE.  In this event, some parallel paths 
will contain multiple integrators.  We do not need to know the details for this course. 
 
 A system which has a PFE with no higher-order poles is called simple. 
 
 The parallel form is known as Jordan Normal Form in mathematics.  The case of 
higher-order pole factors, corresponding to multiple integrators in some paths, 
corresponds to what is known as eigenvector chains in those paths.  The details, though 
fascinating, are not needed in this course. 
 
 With the states labeled from top to bottom as shown, one may write down directly 
the state equations 
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As an exercise, one may find the transfer function 

DBAsICsH +−= − 1)()(  
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and verify that it is the same as the one we started with. 
 
 Note that for a scalar system (e.g. n=1) one may write 
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This shows that the residues can be placed on the input paths in the figure above.  In fact, 
as long as Kcb =  in each path, one can split the residues between input and output paths. 
 
 This development gives a very easy way to realize SISO transfer functions in SV 
form.  One notes that it is easy to write down (6) directly from (5) without having to draw 
the BD. 
 
 Note that this parallel state-space form is not the same as RCF or OCF, though all 
three have the same transfer function.  In fact, RCF, OCF, and the Jordan form are related 
by state-space transformations, which we shall not discuss in this course. 
 
 The A matrix in (6) is known as a parallel form matrix for the characteristic 
polynomial 
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If the A matrix is diagonal with the poles appearing on the diagonal it is called simple.  If 
the system is not simple, then there will be some off diagonal 1's in A corresponding to 
Jordan eigenvector chains of length greater than one.  You will hear more about this in 
another course (EE 5307). 


