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1.Control Theory 

Objective:  
The course on control theory  is concerned with the analysis and design of closed loop 

control systems. 

 

Analysis: 

Closed loop system is given           determine characteristics or behavior 

 

Design: 

Desired system characteristics or behavior are specified          configure or synthesize closed 

loop system 

Plant 

sensor 

Input  

Variable 
Measurement of 

Variable 

Variable 

Control-system components 
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1.Introduction 

Definition: 

A closed-loop system is a system in which certain forces (we call these inputs) are 

determined, at least in part, by certain responses of the system (we call these outputs). 

System 

 inputs  

System 

outputs  

Closed loop system  

O O 
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Definitions:  

The system for measurement of a variable (or signal) is called a sensor. 
A plant of a control system is the part of the system to be controlled. 

The compensator (or controller or simply filter) provides satisfactory   

    characteristics for the total system. 

Two types of control systems:  

 

A regulator maintains a physical variable at some constant value in the 

    presence of perturbances. 

A servomechanism describes a control system in which a  physical variable is       

required to follow, or track some desired time function (originally applied in order 

to control a mechanical position or motion). 

       System 
input Error 

Plant 

Sensor 

Manipulated  

variable 

Closed loop control system 

       System 
output 

Compensator + 

1.Introduction 
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1.Introduction 

Example 1:  RF control system 

 

Goal: 

Maintain stable gradient and phase. 

Solution: 

Feedback for gradient amplitude and phase. 

Phase detector 

~ ~ 

+ 

- 

Phase  

controller 

amplitude 

controller Klystron cavity 

Gradient 

set point 

Controller  
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1.Introduction 

Model: 

Mathematical description of input-output relation of components combined with block 

diagram. 

Amplitude loop (general form): 

Klystron 

cavity 

amplifier 

controller Reference 

 input output 
RF power 

 amplifier 

Monitoring  

transducer 

_ 

Gradient detector 

plant + 
error 
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1.Introduction 

RF control model using “transfer functions” 

A transfer function of a linear system is defined as the ratio of the Laplace   

transform of the output and the Laplace transform of the input with I. C .’s =zero. 

Input-Output Relations 

Transfer Function Output Input 

U(s) Y(s) P(s)K(s)G(s)

E(s) Y(s)

Y(s)

(s)G(s)HL(s) c

R(s) L(s)L(s)M(s))1(T(s) 1

Gradient detector 

Klystron 

cavity 

controller 

Reference  input 

Error 

Output 

 

_ 

Control input 

P(s)K(s)
R(s)

M(s)

Y(s)E(s)

U(s)

+  sHc
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1.Introduction 

   Example2:  Electrical circuit  

 Differential equations: 

  (t)V dττi
C

 i(t)R i(t)R

t

1

0

21

1
 

  (t)V dττi
C

 i(t)R

t

2

0

2

1
 

 Laplace Transform:  

(s)VI(s)
Cs

1
 I(s)R I(s)R 121 




(s)VI(s)
Cs

1
 I(s)R 22 




     Transfer function: 

1s)CR(R

1sCR

(s)V

(s)V
G(s)

21

2

1

2






(t)V1
(t)V2

i(t) 1R

2R

C

1 V Input       ,output    
2V
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1.Introduction 

Example 3: Circuit with operational amplifier 

+ - 

. 

sCR

1sCR

(s)V

(s)V
G(s)

1

2

i

0






It is convenient to derive a transfer function for a circuit with a single operational 

amplifier that contains input and feedback impedance: 

+ - 

(s)Z f

(s)Zi

I(s)

(s)Vi (s)Vo

. 

iV
oV

1i 1R 2R C

(s)  IR(s)V 11i  (s)I
Cs

1
R(s)V 12o 










and 

(s) I(s) Z(s)V ii 
(s)Z

(s)Z

(s)V

(s)V
G(s)

i

f

i

o (s) I(s)Z(s) V fo and 
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Model of Dynamic System 

We will study the following dynamic system: 

y(t)

u(t)

γ k

1m 

Parameters: 

       : spring constant 

       : damping constant 

       : force 

Quantity of interest: 

       : displacement from equilibrium  

k
γ
u(t)

y(t)

Differential equation: Newton’s third law 

       tutyγ tk yFty ext  

       
 

tutk ytyγty  

    00 y0y , y0y  

 1m 

Equation is linear  (i.e. no      like terms). 

 

Ordinary (as opposed to partial e.g.                                       ) 

 

All coefficients constant:  

  0x,tf
tx

  









    γ tκ ,γt k 

2y

for all t
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Model of Dynamic System 

Stop calculating, let’s paint!!! 

Picture to visualize differential equation 

1.Express highest order term (put it to one side) 

       tutyγ tk yty  

2.Putt adder in front 

3.Synthesize all other terms using integrators! 

 tu  ty

 tk y
 tyγ 

+ 

Block diagram 

+ 

 

 
- 

 

 

- 

 

 

 tu  ty  ty

γ

k

 ty
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2.1 Linear Ordinary Differential Equation (LODE) 
General form of LODE: 

                t ubtu b...t ubt yaty a...t yaty 01

m

m01

1n

1n

n  




m ,n Positive integers, m01n10 ,...,b, b,...,a,aa  real numbers. 

Mathematical solution: hopefully you know it 

Solution of LODE:       ,tytyty ph 

          0t yaty a...t yaty 01

1n

1n

n  




Sum of homogeneous solution             (natural response) solving   tyh

And particular solution            .   typ

How to get natural response           ?  Characteristic polynomial  tyh

 

     

     tλ

n

 tλ

1r

 tλ1r

r21h

n1r

 r

1

01

1n

1n

n

n1r1 ec...ec e tc... tccty

0λλ...λλλλ

0aλaλaλλχ



















 typ  tuDetermination of               relatively simple, if input            yields only a finite number of  

independent  derivatives. E.g.:    .t, βetu r

r

ξt

;nm  coefficients 
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2.1Linear Ordinary Differential Equation (LODE) 

Most important for control system/feedback design: 

In general: given any linear time invariant system described by LODE can be 

realized/simulated/easily visualized in a block diagram 

             t ubtu b...t ub y(t)aty a...t yaty 01

m

m01

1n

1n

(n)  




 2, m2n 

Control-canonical form 

+ 

 

 
- 

 

 

- 

 

 

 tu

1a

0a

2x
0b

 ty

2b

1b

1x

+ 

 

 

+ 

 

 

+ 

 

 


Very useful to visualize interaction between variables! 

What are        and       ???? 1x
2x

More explanation later, for now: please simply accept it! 
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2.2 State Space Equation 

Any system which can be presented by LODE can be represented in State space 

form (matrix differential equation). 

Let’s go back to our first example (Newton’s law): 

One LODE of order n transformed into n LODEs of order 1 

What do we have to do ??? 

       tutk ytyγ ty  

1. STEP: 

     

         

     tutγ xtk x                

tutyγ tk ytytx

txtytx

21

 

2

2

  

1











 Deduce set off first  order differential equation in variables 

 

            (so-called states of system) 

                       

               Position : 

                      

               Velocity :         : 

 tx j

 tx1

 tx2

 ty

  ty
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2.2 State Space Equation 

2. STEP: 

Put everything together in a matrix differential equation: 

       tD utC xty 

Measurement equation 

 

 

 

 
 t u

1

0

tx

tx
 

-k   -γ

1       0

tx

tx

2

1

2

1








































State equation 

        tB utA xtx 

   
 

 
 

tx

tx
 0  1ty

2

1











Definition: 

 

The system state      of a system at any time     is the “amount of information” that, 

together with all inputs for         , uniquely determines the behaviour of the system 

for all         . 

0t

0tt 

0tt 

x
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2.2 State Space Equation 
The linear time-invariant (LTI) analog system is described via 

               Standard form of the State Space Equation 

Variable      Dimension Name 

state vector 

system matrix 

input matrix 

input vector                   

output vector 

output matrix 

matrix representing direct coupling 

between input and output 

 tX

B

 tu

 ty

C

D

Declaration of variables 

     tB utA xtx  State equation 

      tD utC xty  State equation 

 

 

 
 .

tx

  

tx

tx

n

1

















Where        is the time derivative of the vector   tx

System completely described by state space matrixes                   ( in the most cases          ).  A, B, C, D 0D 

1n

nn

rn

1r

1p

np

rp

And starting conditions  0tx
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2.2 State Space Equation 

Why all this work with state space equation? Why bother with? 

     

       tD utC xty

  tB utA xtx





with e.g. Control-Canonical Form (case                      ): 

  3210

210

b , D b bb , C

1

0

0

 , B

a  a  a

 1       0       0   

0       1       0   

A 







































or Observer-Canonical Form: 

  3

2

1

0

2

1

0

b ,D1  0  0 ,C

b

b

b

 ,B

a  1  0

a  0  1

a  0  0

A 











































Notation is very compact, But: not unique!!! 

Computers love state space equation! (Trust us!) 

Modern control (1960-now) uses state space equation. 

General (vector) block diagram for easy visualization. 

                t ubtu b...t ubt yaty a...t yaty 01

m

m01

1n

1n

n  




BECAUSE: Given any system of the LODE form 

Can be represented as  

3 ,m3n 
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2.2 State Space Equation 

Block diagrams: 
Control-canonical Form: 

+ 

 

 

- 

 

 

- 

 

 

 tu

1a 0a

2x
0b

 ty

2b
1b

1x + 

 

 

 

 

 

+ 

+ 

 

 

 

Observer-Canonical Form: 

+ 

 

 
- 

 

 

 tu

1a0a

1x

2b

y(t)

0b
1b

2x
+ 

 

 

+ 

 

 

+ 

 

 

+ 

 

 
- 

+ 
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2.2 State Space Equation 

Now: Solution of State Space Equation in the time domain. Out of the hat…et voila: 

          dττt B uτΦ0 xtΦtx
t

0
 

 

 

Natural Response  +  Particular Solution 

     

         tD u dττt B uτΦC0 xtC Φ      

tD utC xty

 t

0 





With the state transition matrix 

  A t3
3

2
2

e...t
!3

A
t

!2

A
AtItΦ 

 
 

 

     

   tΦt.Φ4

tΦtΦtt.Φ3

I0.Φ2

tA Φ
dt

tdΦ
.1

1

2121











 Exponential series in the matrix A (time evolution operator) properties of           (state transition matrix).  tΦ

Example: 

  A t2 e
1  0

   t1
AtIt, Φ

0  0

0  0
A

0  0

1  0
A 




























Matrix A is a nilpotent matrix. 



S. Simrock & Z. Geng,  7th International Accelerator School for Linear Colliders, India, 2012  

21 

2.3 Examples 

It is given the following differential equation: 

       t u2t y3ty
dt

d
4ty

dt

d
2

2



Example: 

State equations of differential equation: 

Let                                                 . It is:        tyt  and  xtytx
 

21


     

       

       t u2t x4t x3tx

t u2t x3t x4tx

txtytx

212

122

21













Write the state equations in matrix form: 

Define system state                           Then it follows:   
 

 
 . 

tx

tx
tx

2

1











     

     t x0  1ty

t u
2

0
t x

   4  3-

1      0 
tx
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2.3 Cavity Model 















bg2/1L

2

02/1

L

0

L

2/1

bg

L

II
m

2
ωR2UωUω2U

Q2

ω

CR2

1
:     ω

    IIU
L

1
U

R

1
UC





circulator 

Equivalent circuit: 

~ 

Generator  
'

gI extR

Resonator   

~ 
bI

'

gI
rI bI

C

oR
L

~ 

. 

. 

. . 

. 

~ 

Coupler 1:m  

Generator  

Resonator   

Last 
Beam-Current 

gI

gI

oZ

oZ

oZ

bI

bI

C

oR

L

Conductor Conductor 
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2.3 Cavity Model 

Only envelope of rf (real and imaginary part) is of interest: 

Neglect small terms in derivatives for U and I 

Envelope equations for real and imaginary component. 

      

  

          dttiItIω  dt tIitI

(t))iU(t)(UωtUiUω2

tiUtUωtUiU

2

1

2

1

t

t

irHF

t

t

ir

ir

2

HFrr2/1

ir

2

HFir

 











 

  





































i0bgiHFri2/1i

r0bgrHFir2/1r

II
m

1

Q

r
ωUΔωUωtU

II
m

1

Q

r
ωUΔωUωtU





      

        

                ti ωexpti ItI2ti ωexpti ItItI

ti ωexpti ItItI

t)(i ωexpti UtUtU

HFi0br0bHF ib rbb

HFgigrg

HFir
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2.3 Cavity Model 

Matrix equations: 

 

 

 

 

   

   









































































tItI
m

1

tItI
m

1

1  0

0  1

Q

r
ω

tU

tU

ω  Δ Δω  

Δω   ω

tU

tU

i0bgi

r0bgr

HF

i

r

2/1

2/1

i

r





With system Matrices: 
































1  0

0  1

Q

r
ω      B           

ω  

Δω  ω
A HF

2/1

2/1

    

 
 

 
 

   

   
































tItI
m

1

tItI
m

1

tu                      
tU

tU
tx

i0bgi

r0bgr

i

r 

General Form: 

     tuBtxAtx
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2.3 Cavity Model 

Solution: 

         

   

   





 








Δωtcos      Δωtsin

Δωtsin   Δωtcos
eΦ(t)

t dtuBt'tΦ0xtΦtx

 tω

t

0

2/1



Special Case: 

 
   

   

 

 
   

    
























 








 
























































i

r tω

2/1

2/1

22

2/1

HF

i

r

i

r

i0bgi

r0bgr

I

I
e

Δωtcos       Δωtsin

Δωtsin   Δωtcos
1

Δω       ω

Δω   ω

Δωω

Q

r
ω

tU

tU

I

I
:

tItI
m

1

tItI
m

1

tu

2/1
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2.3 Cavity Model 

Gain 2 

Harmonic oscillator 

s

1

Integrator 
+ 

 

 

s

1

4

3

Gain 1 

Scope  

Integrator 1 Step  Gain 

2

- - 

Step  
State space 

Scope  
BuAxx 

DuCxy 

Harmonic oscillator 

Scope  

Step  

BuAxx 

DuCxy 

State space 

Step  

Load Data cavity 
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2.3 Cavity Model 

s

1

Integrator 
+ 

 

 

s

1

12w

dw

Gain 2 

Gain 4 

Scope  

Integrator 1 

Step  Gain 

k
- - 

dw

Gain 5 

+ 

 

 
- + Step 1  

12w

Gain 3 

Load Data 
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2.4 Masons Rule 

Mason’s Rule is a simple formula for reducing block diagrams. Works on continuous and 

discrete. In its most general form it is messy, but  For special case when all path touch 

 

 



gainsloop path -1

th gainsforward pa
H(s)

Two path are said to touch if they have a component  in common, e.g. an adder. 

 

 Forward path:  F1: 1 - 10 - 11 - 5 – 6 

                                          F2: 1 - 2 - 3 - 4 - 5 – 6 

Check: all path touch (contain adder between 4 and 5) 

   
   

 

342

2153

342

32135

21

21

HHH1

HHHH

HHH1

HHHHH

lGlG1

fGfG
H
















1 U
1H

4H

10 11 

2 3 4 5 6 

7 8 9 

5H

3H
2H

Y

 

 

 

  32

421

3212

351

HIG

HHIG

HHHfG

HHfG









 

  

 

 By Mason’s rule: 

 Loop path :      I1: 3 - 4 - 5 - 8 – 9 

                            I2 :  5 - 6 - 7 
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2.5 Transfer Function G (s) 

Continuous-time state space model 

     

     tD utC xty

tB utA xtx



 State equation 

Measurement equation 

Transfer function describes input-output relation of system. 

       sB UsA X0xss X 

         

       s B Usφ0 xsφ         

sB UAsI0xAsIsX
11






     

       
         sD Us B UsC φ0 xsC φ      

sD]UBAsI[c0]xAsIC[      

sD UsC XsY

11









      D BsC φDBAsICsG
1




System  sU  sY

Transfer function             ( pxr ) (case: x(0)=0):  sG
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2.5 Transfer Function 

Transfer function  of TESLA cavity including 8/9-pi mode 

 

 

 

  


























 


π/

π/

π/
π

π/

π ω        s  

    ωs

ωsΔω

ω

(s)  Hπ

9

8
21

9

8

9

8
9

8
21

2

9

8
21

2

9

8

9

8
21

9

8           mode
9

8









       sHsHsHs H
π

9

8πcavcont 

 
 

  

 

  




















π/π

ππ/

π/π

/
π

ω         sΔω 

Δω     ωs

ωsΔω

πω
s     Hπ

21

21

2

21

2

21        mode
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2.5 Transfer Function of a Closed Loop System 

 sR  sE  sU  sY
 sHc

 sG

 sM

- 

           

          
         s Ys MsLs RsL        

s YsMsRs HsG        

s Es HsGs UsG sY

c

c







 

We can deduce for the output of the system. 

  sLWith         the transfer function of the open loop system (controller plus plant). 

          

          
   s RsT                

s RsLs MsLIsY          

s RsLs Ys MsLI          

1









  sT is called : Reference Transfer Function 
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2.5 Sensitivity  

System characteristics change with system parameter variations 

The ratio of change in Transferfunction T(s) by the parameter b can be defined as: 

The sensitivity function is defined as: 

T(s)

b

b

T(s)

T(s)

b

Δb

ΔT(s)
limS

0Δb

T

b







Or in General sensitivity function of a characteristics W with respect to the parameter b: 

W

b

b

W
SW

b





Example: plant with proportional feedback given by   pc KsG   
1.0s

K
sGp




Reference transfer function T(s):  
 

  kpp

pp

HsGK

sGK
sT




1

 
 

  




jK..

K.

HjGK

HjGK
jS

p

p

kpp

kppT

H










25010

250

1

Kp=10 

Kp=1 

|S| 

omega 
Increase of H results in decrease of T 

 System cant be insensitive to both H,T 

Δb 

b 

T(s) 

ΔT(s) 
S  
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2.5 Disturbance Rejection 

Disturbances are system influences we do not control and want to minimize its 

impact on the system. 

 

D(s)(s)TR(s)T(s)

D(s)
H(s)(s)G(s)G1

(s)G
R(s)

H(s)(s)G(s)G1

(s)G(s)G
sC

d

pc

d

pc

pc











To Reject disturbances, make                     small!    sDTd 

)(sGc

)(sGd

Plant 

R(s) 

D(s) 

)(sGp

H(s) 

C(s) 

 Reduce the Gain                between dist. Input and output 

 Increase the loop gain                              without increasing the gain              .Usually 
accomplished by the compensator              choice   

 Reduce the disturbance magnitude         should always be attempted if reasonable 

 Use feed forward compensation, if disturbance can be measured. 

 jGd
  jGpjGc )(

 jGc
 jGd

 td

 Using frequency response approach to    

investigate disturbance rejection 

 In general                cant be small for all -      

Design                 small for significant 

portion of system bandwidth 

 jTd

 jTd
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2.6 Stability 

Now what do we know: 

The impulse response tells us everything about the system response to any arbitrary 

input signal  u(t) . 

 

 

what we have not learnt: 

If we know the transfer function G(s), how can we deduce the systems behavior? 

What can we say e.g. about the system stability? 

Input never exceeds        and output never exceeds          then we have BIBO 

stability! 

 

Note: it has to be valid for ALL bounded input signals! 

 ,M 2
 M1

A linear time invariant system is called to be BIBO stable (Bounded-input-bounded-output) 

For all bounded inputs                      (for all t) exists a boundary for the output signal  

So that                     (for all t) with        and           positive real numbers. 

    Mtu 1
   .Mty 2

 ,M 2

 M1
 ,M 2

Definition: 
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2.6 Stability 

BIBO-stability has to be shown/proved for any input. Is is not sufficient to show 

its validity for a single input signal! 

Example:                                     integrator          ,  s UsGs Y     
s

1
s G 

1.Case 

The bounded input signal causes a bounded output signal. 

2.Case 

     

     1
s

1
L sYL ty

1s,  Utδt u

11 













   

     t
s

1
L sYL ty

s

1
s,  U1tu

2

11 
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2.6 Stability 

Condition for BIBO stability: 

     s UsGs Y 

We start   from the input-output relation 

By means of the convolution theorem we get 

            



t

0 0
21

t

0
M dτ τ gM dτ τtuτg  dττt uτg t y  

 



0

dt t g

Therefore it follows immediately: 

 

If the impulse response is absolutely integrable 

 

 

 

Then the system is BIBO-stable. 
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2.7  Poles and Zeroes 

Can stability be determined if we know the TF of a system? 

   
 

 
DB

sχ

AsI
CD BsC ΦsG

 adj





 
 
 

 

 sD

sN

ps

zs
αsg

ij

ij

l

n

1l

k

m

1k
ij 










Coefficients of Transfer function  G(s) are rational functions in the complex variables 

        

What do we know about the zeros and the poles? 

 

 

Since numerator           and  denominator            are  polynomials   with real coefficients,  

Poles and zeroes must be real numbers or must arise as complex conjugated pairs! 

 sN  sD

kz
lp α nm      Zeroes.     Poles,      real constant, and it is               (we assume common factors have 

 already been canceled!) 
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2.7 Poles and Zeroes 

 B AsICadj 

Stability directly from state-space 

 

  

Assuming D=0 (D could change zeros but not poles) 

 

 

 

Assuming there are no common factors between the poly                            and  

 i.e. no pole-zero cancellations (usually true, system called “ minimal” ) then we can identify 

    DBAsICscall : HRe
1




 
 
 

 
 sa

sb

AsIdet

BAsICadj
sH 






 AsIdet 

  BAsICadjb(s) 

   AsI detsa 

and 

i.e. poles are root of   AsI det 

i
thiLet        be the        eigenvalue of A 

  forall i0}{λRe iif  System stable 

So with computer, with eigenvalue solver, can determine system stability directly from coupling matrix A. 
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2.8 Stability Criteria 

Several methods are available for stability analysis: 

 

1.Routh Hurwitz criterion 

 

2.Calculation of exact locations of roots 

   a. Root locus technique 

   b. Nyquist criterion 

   c. Bode plot 

 

3.Simulation (only general procedures for nonlinear systems) 

 A system is BIBO stable if, for every bounded input, the output remains bounded with  

    Increasing time. 

 

 For a LTI system, this definition requires that all poles of the closed-loop transfer-function 

    (all roots of the system characteristic equation) lie in the left half of the complex plane. 

 While the first criterion proofs whether a feedback system is stable or unstable,  

     the second Method also provides information about the setting time (damping term). 
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2.8 Poles and Zeroes 

Medium oscillation  

Medium decay 

X X X 

X 

X 

No Oscillation  

Fast Decay 

X 

X 

X 

X 
No oscillation 

No growth 

Fast oscillation  

No growth  

Medium oscillation 

Medium growth 

ω(s)Im 

σ(s)Re 

No oscillation 

Fast growth 

Pole locations tell us about impulse response i.e. also stability: 
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2.8 Poles and Zeroes 

Furthermore: Keep in mind the following picture and facts! 

Complex pole pair: Oscillation with growth or decay. 

 

Real pole: exponential growth or decay. 

 

Poles are the Eigenvalues of the matrix A. 

 

Position of zeros goes into the size of  ....c j

 In general a complex root must have a corresponding conjugate root ( N(s), D(S) polynomials 

    with real coefficients. 
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2.8 Bode Diagram 

Phase Margin 
mφ

00

0180

Gain Margin 

dB

mG

The closed loop is stable if the phase of the unity crossover frequency of the OPEN LOOP  

Is larger than-180 degrees. 

ω

ω
1ω

2ω

2ω 1ω

090
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2.8 Root Locus Analysis 

Definition: A root locus of a system is a plot of the roots of the system characteristic 

equation (the poles of the closed-loop transfer function) while some parameter of the 

system (usually the feedback gain) is varied. 

 
     321 ps ps ps

K
sK H




X 

 

X 

 

X 

 1p2p
3p

 
 
 

  .0sK H1roots at 
sK H1

sK H
sGCL 




How do we move the poles by varying the constant gain K? 

 sR  sY

- 

+ 
 sHK



S. Simrock & Z. Geng,  7th International Accelerator School for Linear Colliders, India, 2012  

44 

2.8 Root Locus Examples 

X 

1p

1ps

1


X 

1p

   21 psps

1

  

X 

2p

X 

1p

   21

1

psps

zs





 

X 

2p
O 

1z

X 

1p

   21

1

psps

zs





 

X 

2p
O 

1z

(a) 
(b) 

(c) 
(d) 
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X 

1p

     321 pspsps

1

   

X 

2p
X 

3p
X 

1p

     321 pspsps

1

   
X 

2p

X 

3p

     321 pspsps

1

   

X 

1p

X 

2p

X 

3p

     321

1

pspsps

zs





  

O X 

2p
X 

3p
1z

X 

1p

2.8 Root Locus Examples (Cnt’d) 

(e) (f) 

(g) 
(h) 
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3.Feedback 

The idea: 

Suppose we have a system or “plant” 

We want to improve some aspect of plant’s performance by observing the output 

and applying a appropriate “correction” signal. This is feedback  

plant 

“open loop” 

“closed loop” 
plant 

? 

Ufeedback 

r 

Question: What should this be? 
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3.Feedback 

Open loop gain: 

Closed-loop gain:  

G(s)
U Y

   
1

O.L

y

u
sGsG













G(s) H(s)1

G(s)
(s)GC.L




 

 G H1

G

u

y
          G Hy      G u               

G uG Hy               G uG u               

uuGoof: yPr

yfb

fb








“closed loop” 

U
G(s)

Y

)(sH

fbU
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3.1 Feedback-Example 1 

Consider S.H.O with feedback proportional to x i.e.: 

Then 

  u xαωxγ x 2

n  

Same as before, except that new “natural” frequency   αω2

n 

Where 


S

1

s

1
y

2

nω

α

U

- 
- 

- 

x x x

γ

   tα x t u

uuxωxγ x

fb

fb

2

n



 

α xuxωxγ x 2 

 n  
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3.1 Feedback-Example 1 

So the effect of the proportional feedback in this case is to increase the bandwidth  

of the system 

(and reduce gain slightly, but this can easily be compensated by adding a constant gain in front…)  

)log(
2

n

1



2

n

1

n ωlog αω log 2

n 

DC response: s=0 

dB 

 
 αωγ ss

1
sG

2

n

2

C.L.


Now the closed loop T.F. is: 

  iωGO.L.

  iωGC.L.
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3.1 Feedback-Example 2 

    dτ τxαtu

t

0

fb 

 

t

0

2

n  dττxαu xωxγ xi.e   

Differentiating once more yields: uα xx ωxγ x 2

n
 

No longer just simple S.H.O., add another state  

In S.H.O. suppose we use integral feedback: 


S

1

s



- 
- 

- 

y

2

nω

U x x x

γ

S

1
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3.1 Feedback-Example 2 

 

 

  αωγsss

s
           

αωγss

1

s

α
1

ωγss

1

sG

2

n

2

2

n

2

2

n

2
C.L.



























Observe that 

1. 

2. For large s (and hence for large     ) 

 

 00GC.L. 

ω

 
 

 sG
ωγ ss

1
sG O.L.

2

n

2

C.L. 


dB 

2

nω

1

 iωGO.L.

 iωGC.L.

)log(

So integral feedback has killed DC gain 

i.e system rejects constant disturbances 
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3.1 Feedback-Example 3 

Suppose S.H.O now apply differential feedback i.e. 

   txα tu fb


  uxωx αγx 2

n  
Now have 

So effect off differential feedback is to increase damping 



αS

- 
- 

- 

xα 

S

1

2

nω

x x x

γ

S

1

x
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3.1 Feedback-Example 3 

dB 

2

nω

1

 iωGO.L.

)log(

 iωGC.L.

Now  
  2

n

2

C.L.

ω sαγs

1
sG




So the effect of differential feedback here is to “flatten the resonance” i.e. damping is increased. 

Note: Differentiators can never be built exactly, only approximately. 
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3.1 PID controller 

(1) The latter 3 examples of feedback can all be combined to form a 

P.I.D. controller  (prop.-integral-diff). 

 ldpfb uuuu 

(2) In example above S.H.O. was a very simple system and it was clear what     

physical interpretation of P. or I. or D. did. But for large complex systems not 

obvious 

 

 Require arbitrary “ tweaking”  

                               That’s what we’re trying to avoid 

S.H.O + 

/sKsKK lDp 

P.I.D controller 

- 

yx u
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For example, if you are so smart let’s see you do this with your P.I.D. controller: 

Damp this mode, but leave the other two modes undamped, just as they are. 

 

This could turn out to be a tweaking nightmare that’ll get you nowhere fast! 

 

 

We’ll see how this problem can be solved easily. 

G

ω

6th order system 

3 resonant poles 

3 complex pairs 

6 poles 

3.1 PID controller 
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3.2 Full State Control 

Suppose we have system 

     

   tC xty

tB utA xtx





Since the state vector x(t) contains all current information about the system the 

most general feedback makes use of all the state info. 

-k x   

xk.....xku nnfb



 11

Where   (row matrix)     ......kk  k n1

Where  example: In S.H.O. examples 

Proportional fbk :  

Differential fbk :  

 

 ddd

ppp

  k xku

 k xk u

0

0









S. Simrock & Z. Geng,  7th International Accelerator School for Linear Colliders, India, 2012  

57 

3.2 Full State Control 
Theorem:           If there are no poles cancellations in 

 
 
 

  BAsIC
sa

sb
sG

1

O.L.
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1n1O.L.
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b...sb
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1...         ...   0 
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0      ...   1    0 

x
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O.L.A

Then can move eigen values of                 anywhere we want using full state feedback. BKA

Proof: 

Given any system as L.O.D.E. or state space it can be written as: 

B

Where 
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3.2 Full State Control 

i.e. first row of  O.L.A Gives the coefficients of the denominator 

    

 









































































)k -(a   ...    )   ...   k-(a

1    .         ..      ..         .0      

    ....         ..      ..         .0      

0                     ...1         0      

 k ...  ... k 

1

...

0

0

..  -a  ...    .-a

1..        ...   .0  

..     ...   ...   .0  

0    ...    1    0  

BKAA

Now

a...sasAsIdetsa

1n1n-00

1n-0

1n-0

O.L.C.L.

0

1n

1n

nO.L.O.L.

So closed loop denominator 

   
   1n1n

1n

00

n

C.L.C.L.

ka...skas             

AsIdetsa



 



Using              have direct control over every closed-loop denominator coefficient  

   can place root anywhere we want in s-plane. 

Kxu 
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3.2 Full State Control 

Example: Detailed block diagram of S.H.O with full-scale feedback 


- - 

- 

+ 2k

1k

u
S

1

2

nω

x x x

γ

x

y

x

Of course this assumes we have access to the       state, which we actually 

Don’t in practice.  

x

However, let’s ignore that “ minor” practical detail for now. 

( Kalman filter will show us how to get       from       ). x x

S

1
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3.2 Full State Control 

With full state feedback have (assume D=0) 

 

B + + 
s

1
C 

A 

K 

kxu fb 

- 

 

Cxy    

Kxu

B u xBKA    x

BKuBu Ax      

]uB[uA x  x

fb

fb

fb















With full state feedback, get new closed loop matrix 

 
 BKAA O.L.C.L. 

Now all stability info is now given by the eigen values of new A matrix 

So 

u x x y
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3.3  Controllability and Observability 

The linear time-invariant system 

Cxy

BuAxx





Is said to be controllable if it is possible to find some input u(t) that will transfer the  

initial state x(0) to the origin of state-space, 

          

t

0

 dττtB uτφ0xtφtx

   finite,with  t0tx 00 

The solution of the state equation is: 

For the system to be controllable, a function u(t) must exist that satisfies the equation: 

        
0t

0

00  dττtBuτφ0xtφ0

With      finite. It can be shown that this condition is satisfied if the controllability matrix 0t

B]B ... A[B  AB  AC 1n-2

M 

Has inverse. This is equivalent to the matrix         having full rank (rank n for an n- th  

order differential equation). 
MC
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3.3  Controllability and Observability 

Observable: 

 

 The linear time-invariant system is said to be observable if the initial conditions x(0)  

    Can be determined from the output function y(t),                   where t1 is finite. With 
10 tt 

        

t

 dττtBuτφCxtC φCxty
0

0

 The system is observable if this equation can be solved for x(0). It can be shown that  

     the system is observable if the matrix: 























1n-

M

CA

  ...

 CA

  C

O

  Has inverse. This is equivalent to the matrix        having full rank (rank n for an n-th  

     Order differential equation).  
MO
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4.Discrete Systems 

Where do discrete systems arise? 

 

Typical control engineering example: 

Digitized 

 sample 

DAC

“Digitized” 

 th ADC

t t 
“Zero-order-hold” 

t 
“continuous” “Digitized” 

Continuous system 

Computer controller 

 ku  tuc
 tyc  ky

t 

Assume the DAC+ADC are clocked at sampling period T. 

 
Continued… 



S. Simrock & Z. Geng,  7th International Accelerator School for Linear Colliders, India, 2012  

64 

4. Discrete Systems 

     

    ,...2,1,0; kkTyky

T1kt;  kTtuku

c

c





Suppose: time continuous system is given by state-Space  

       

     tD utC xty

x0;  xtB utA xtx

ccc

0cccc





Can we obtain direct  relationship between  u(k) and  y(k)? i.e. want 

Equivalent discrete system: 

DAC )t(h ADC
)k(u )k(y

)k(h
)k(u )k(y

Then u(t) is given by: 
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4. Discrete Systems 

 Yes! We can obtain equivalent discrete system.    

       kT uB dτekTxeTkT x c

t

0

Aτ

c

At

c 












 

Recall 

   

     

   

DC, D.B dτB de, BeSo     A

0x0       x          

kuDkxCk       y          

kuBkxA)1       x(k          

dd

T

0

Aτ

d

AT

d

c

dd

dd











     

t

0

c

Aτ

c

At

c τ) dτ(t.Bue0xetx

From this       dττkT.BuekTxeTkTx c

T

0

Aτ

c

AT

c  

 Observe that      ,T]0[ for τkTuT-τkTu 

  T-τkTi.e. u  is constant   kTu over ,T]0[ τ

i.e. can pull out of integral. 

        .O Tkxkx1kx  So we have an exact (note:  discrete  time equivalent to the time  

Continuous system at sample times t=kT- no numerical approximation! 
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4.1 Linear Ordinary Difference Equation 

A linear ordinary difference equation looks similar to a LODE 

             k ub1k ub...mk ubk ya1k ya...1nk yanky 01m011n- 

Assumes initial values        .00,y1, ...., y1n-y m;n 

Z-Transform of the LODE yields (linearity of Z-Transform): 

             z Ubz Uzb...z Ubzz Yaz Yza...z Yazz Yz o1m

m

011n

1nn  



It follows the input-output relation: 

                   U(z)     bzb....bzz Yaza...azz 01m

m

011n

1nn  



   

     z UzGz Y          

           

zU
aza...z

bzb....bz
zY

01

n

01m

m








         .zGz,  then Ykδku, 1zif U 

Transfer Function of system is the Z-Transform of its pulse response! 

Once again: 
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4.1  z-Transform of Discrete State Space Equation  

     

     kD ukC xk      y

k uBk xA1kx dd





       

        z  B U0z xz XzI-A

z UBz XA0-z xzX z

d

dd





         zB UAzI0z xzI-AzX
1

d

1

d




Applying z-Transform on first equation: 

     

        z UDBAzIC0z xzI-AC         

zD UzCXz Y

1

d

1

d 





     

    DBzI-ACzG

  withz  UzGzY

1

d 





Homogeneous solution 

Particular solution NOW: 

 If x(0)=0 then we get the input-output relation: 

  Exactly like for the continuous systems!!!!!!! 
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4.2  Frequency Domain/z-Transform 

For analyzing discrete-time systems: 

                                      z-Transform 

(analogue to Laplace Transform for time-continuous system) 

 

It converts linear ordinary difference equation into algebraic equations:  easier to find  

a solution of the system! 

It gives the frequency response for free! 

 

z-Transform ==generalized discrete-time Fourier Transform 

 

 

    ).eF(zωF
~

en  ,...... th2,-1- for k0kif  f iω

Given any sequence     kf the  discrete Fourier transform is 

   





k

kiekfωF
~  

T

1
πf,   f2 ω with the sampling frequency in Hz,  

T   difference / Time between two samples. 

 

In the same spirit:       . zkf]kZ[fzF
0k

-k






With z a complex variable 

Note:   
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4.3 Stability (z-domain) 

A discrete LTI system is BIBO stable if 

  

Condition for BIBO stability: 

 



0

ih   BIBO stable. 

For L.O.D.E State space system: 

 
 
 

 


 





k

1i

ii

i

n

1i

i1i z Tβ
pz

zz
α.zH

With partial fraction of the rational function: 

Once again pole locations tell a lot about shape of pulse response. 

 

Zeros determine the size of  i

    k K;  k ykM;  k u 

              



k

0 0

k

0

k

0

 i hM i hM i h iku  i hiku  k y
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4.3 Stability (z- domain) 

. . . . 

. . 
. . 

X 

X 

X 

X X 

X 

X 
X 

X 

X 

X 

 zIm

 zRe

Constant 

Damping 

Damping 

Damping 

Damping 

Growing 

Growing 

unit circle 

z-Plane 



S. Simrock & Z. Geng,  7th International Accelerator School for Linear Colliders, India, 2012  

71 

4.3 Stability (z- domain) 

In General 

Complex pair      oscillatory growth / damping 

Real pole    exponential growth / decay but maybe oscillatory too (e.g:  0r  )(1 wherenrn  ) 

The farther inside unit circle poles are  

The faster the damping  the higher stability 

             

                                           system stable 1p . i ei
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4.3 stability (z-domain) 

Stability directly from State Space: 

 

Exactly as for cts systems, assuming no pole-zero cancellations and D=0 

   

   d

dd

AzIdet  za

BAzICadj  zb





If                     for all i   system stable 

 

Where         is the ith e-value of         . 

1i

i dA

 
 
 

 

 
 d

dd

d

1

d

AzIdet

BAzICadj
        

BAzIC
za

zb
zH









Poles are eigenvalues of  

    So check stability, use eigenvalue solver to get e-values of the matrix         , then 
dA

dA
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4.4  Discrete Cavity Model 

Converting the transfer function from the continuous cavity model to the discrete model: 
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The discretization of the model is represented by the z-transform: 
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4.5  Linear Quadratic Regulator 

     

   xC xk      z

kB ukA x1kx



Given: 

Suppose the system is unstable or almost unstable.We want to find              which will   

bring  x(k)  to Zero, quickly, from any Initial condition. 

 ku fb

(Assume D=0 for simplicity) 

 

i.e. 

{A,B,C} 
X 

  ?ku fb 

+ 
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4.5 Trade Off 

(1) “Bad“  damping                                             (1) “Good“ damping  

 Large Output excursions                               Small Output excursions 

 

 

(2) But “Cheap“ control i.e         Small                 (2) But “expensive control i.e         large. fbu fbu

Z

K

Z

K

K

fbU

K

fbU
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4.5 Quadratic Forms 

A quadratic form is a quadratic function of the components of a vector: 
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4.5  Quadratic Cost for Regulator 

What do we mean by “bad“ damping and “cheap“ control? We now define precisely 

 what we mean. Consider: 

 

}R uuQ x{xJ i

T

ii

0i

T

i 




The first term penalizes large state excursions, the second penalizes large control. 

0,R0Q 

Can tradeoff between state excursions and control by varying Q and R. 

Large Q  “good“ damping important 

Large R actuator effort “expensive“ 
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4.5 LQR Problem Statement 

(Linear quadratic regulator) 

 iT

ii

0i

T

i R uu Q xxJ 




= minimum 
 

The optimal control sequence is a state feedback sequence   
0iu

Algebraic Riccati Equation (A.R.E) for discrete-time systems. 

 

  SABSBBRABAQSAA         S          

SABSBBR      K

xK         u          

T1 TTT

T1 T

opt

iopti











iu
0xNote: Since        = state feedback, it works for any initial state 

 ;   xBuAxx 0ii1i Given: given: 

 ,...,u,uu 210
Find control sequence such that 

Answer: 
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4.5 LQR Problem Statement 

    







0i

i

T

ii

T

i0i0lqr R uuQ x xu, xJ

(Of course that doesn‘t mean its “best“ in the absolute sense .-)    

(1) So optimal control,                           is state feedback! This is why we are  

      interested in state feedbck. 

 

(2) Equation A.R.E. is matrix quadratic equation. Looks pretty intimidating but  

      Computer can solve in a second. 

 

(3) No tweaking ! Just specify {A,B,C,D} and Q and R, press return button, LQR 

      Routine Spits out        - done 

 

      (Of course picking  Q  and  R  is tricky sometimes but that‘s another story). 

 

(4)  Design is guaranteed optimal in the sense that it minimizes. 

 

 

iopti xKu 

optK

Remarks: 
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4.5 LQR Problem Statement - Remarks 

(5) As vary Q/R Ratio we get whole family of         ‘s, i.e. can Trade-off between state  

excursion (Damping) Vs actuator effort (Control) 

Actuator effort 

State  

excursions 

i

0i

T

iu uRuJ 












0i

i

T

iz Q xxJ

 i

TT

i pCxCx

optimal i

T

i zzρ

1uJ

1zJ

lqrK

Achievable 
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4.6 Optimal Linear Estimation 

Our optimal control has the form       k xkKku optopt 

This assumes that we have complete state Information                     -not actually true!. 

e.g: in SHO, we might have only a Position sensor but Not a velocity sensor. 

 

How can be obtain “good“ estimates of the velocity state from just observing  

the position state? 

 

Furthermore the Sensors may be noisy and the plant itself maybe subject to  

outside disturbances (process noise) i.e. we are looking for   this: 

 kxopt

Noise 

sensor 
Amazing box which  

Calculates “good“ estimate 

Of x(k) from  

y(0),……y(k-1) 

K 

Process 

noise 

 kw  1x|kx̂K û 

 1x|kx̂ 
 ky

 kv

 kCx
{A,B,C} 

X + 

+ 
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4.6 Problem Statement : 

     

   

     kvkC xk     y

xC xk      z

kB wkA x1k x







Estimator K 

Process 

noise 

 kw

 1x|kx̂K û 

 1x|k x̂ 

 ky

 kv

 kz

sensor 

Noise 

{A,B,C} 
X + 

+ 

Assume also  0x is Random & Gaussian and that       kVk, wkx 

are all mutually Independent for all k. 

 

 1k|k x̂  1k ,..,0  yy Find : Optimal estimate of  x(k)   given  

Such that  “mean squared error“   

      1k|k x̂k x E 
2

2
 = minimal   

Fact from statistics:         1k0 ,..., yy  kxE1 kkx̂ 
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4.6 Kalman Filter 

The Kalman filter is an efficient algorithm that computes the new 
i1i

x̂
 ( the  linear-least-mean  

( square estimate) of the system state vector  1ix 
, given   i ,..., 0 yy ,by updating the old estimate  

1ii
x̂

 and old  1ii
x~


(error) . 

Kalman  

Filter 

               (step i)                

 

(old estimate) 

(old error variance) 

iy
(new measurement) 

(new error variance) 

(new estimate) 

2

2
1ii1ii

x~p




1ii
x̂



1ii
p

 i1i
p



i1i
x̂


The Kalman Filter produces i1i
x̂
 from 1ii

x̂
 ( rather  than  

ii
x̂ ), because it “tracks” the system 

“dynamics”. By the time we compute  
ii

x̂ from 1ii
x̂

 , the system state has changed from 

ii1ii BwAx to xx 
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4.6 Kalman Filter 

The Kalman Filter algorithm can be divided in a measurement update and a time update: 

Measurement update (M.U.): 

Time Update (T.U.): 

With initial conditions: 

Kalman Filter 

Measure. 

update 
Time 

update 

1ii
x̂



1ii
p



ii
x̂

ii
p

iy

i1i
x̂


i1i
p



   

 
1ii

1 T

1ii

T

1ii1iiii

1iii

1 T

1ii

T

1ii1iiii

CpVCCpCppp

x̂Cy VCCpCpx̂x̂

















TT

iii1i

iii1i

BWBAApp

x̂Ax̂









010

10

Xp̂

0x̂
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By pluggin M.U. equations into T.U. equations. One can do both steps at once: 

 

 

Known as discrete time Riccati Equation 

   
1iii

1 T

1ii

T

1ii1ii

iii1i

x̂Cy VCCpCApx̂A        

x̂Ax̂













 

  1 T

1ii

T

1iii

1iiii1iii1i

VCCpCpA   L

x̂CyLx̂Ax̂











where 

   TT

1ii

1 T

1ii

T

1ii1ii

TT

iii1i

BWBACpVCCpCppA         

BWBAApp













    T

1ii

1 T

1ii

T

1ii

TT

iii1i
A1CpVCCpCApBWBAApp 







4.6 Kalman Filter 
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4.6 Picture of Kalman Filter 

+ 
- - 

Kalman Filter 

Time varying gain 

Continued.. 

+ 

+ + 

+ iw 1ix 
B 1Z 1 ix

C
iz

iz

iy
iv

1ix̂ 

A

1Z 1

1 ii
x̂

 1 ii
ŷ



A

iL

ie
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4.6 Picture of Kalman Filter 

If v=w=0=> Kalman filter can estimate the state precisely in a finite number of steps. 

Plant  Equations: 

Kalman Filter: 

iii

ii1i

vCx  y

BuAxx





 
1 ii1 ii

1 iiii1 ii i1i

x̂Cy

ŷyLx̂Ax̂
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4.6 Kalman Filter 





























































































1 ii

i

1 ii

i

i

i

1 ii

i

ii i1i

1i

x̂

x

      C0

0C     

ŷ

z

v

w

1      0

0B     

x̂

x

CLC  AL

0A         

x̂

x

(2) In practice, the Riccati equation reaches steady state in a few steps. People 

Often run with steady-state K.F.i.e 

1T

ss

T

ssss V) C(CP CApL 

Remarks: 

(1)  Since iii vCxy  and 
i1ii

x̂Cŷ 


can write estimator equation as 

 
  iii1 iii

1 iiiii1 iii1i

vC xLx̂ CLA      

x̂C vC xLx̂A x̂









can combine this with equation for  1ix 

 ACPV) C(CP CApBWB AApp ss

1T

ss

T

ss

TT

ssss


Where 
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4.7 LQG Problem 

Now we are finally ready to solve the full control problem. 

},D,C,B{A

z)        H(

cccc

fbU
- 

kW

ky

kV

kzi.e. 

{A,B,C} 

X 
p(z)

+ 

+ 

c
X

0
j

v,
i

w

ij
Vδ

j
v,

i
v,  

ij
Wδ

j
w,

i
w

k
v

k
Cx

k
    y

k
Cx

k
    z

k
w

w
B

k
Bu

k
Ax

1k
x












Given: 

 ,vw kk both Gaussian 

For Gaussian, K.L. gives the absolute best estimate 
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4.7 LQG problem 

Separation principle:  ( we won’t prove) 

 

The separation principle states that the LGQ optimal controller is obtained by: 

 

(1) Using Kalman filter to obtain least squares optimal estimate of the plant state, 

             

i.e. can treat problems of  

- optimal feedback and  

- state estimate separately. 

1kkc x̂(k)x


i.e.: Let 

(2) Feedback estimated LQR- optimal state feedback 

1kk
x̂ 

LQR
-K      

(k)
c

 x
LQR

Ku(k)
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4.7 Picture of LQG Regulator  
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4.7 LQG Regulator 

k
v

k
C x

k
  y          

k
C x

k
   z          

k
w

w
B)

k
Bu(

k
A x

1k
x








1kk
x̂K

k
     u          

1kk
x̂C

k
yL

k
Bu

1kk
x̂A

k1k
x̂





















TCPC
1

TCPCVTAPCTBWBTAPA   

P
1

TCPCVTAPCL

SATB
1

SBTBRSBTAQSATAS
1

SBTBRk







 








 







 







 

Plant 

LQG Controller 



S. Simrock & Z. Geng,  7th International Accelerator School for Linear Colliders, India, 2012  

93 

4.7 Problem Statement (in English) 

Want a controller which takes as input noisy measurements, y, and produces as output a  

Feedback signal ,u, which will minimize excursions of the regulated plant outputs (if no pole 

-zero cancellation, then this is equivalent to minimizing state excursions.) 

Also want to achieve “regulation” with as little actuator effort ,u, as possible. 

 

Problem statement (Mathematically) 

Find: Controller     

kU ky

Which will minimize the cost 

Rms “state” 

excursions 

Rms “actuator” 

effort Plant 

Where 

Controller: 

   
c
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c
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c
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c

CzH
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k yB1k xA1kx
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kwkk1k
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4.7 Problem Statement 

Idea:   Could  we use estimated state Feedback? 

Remarks: 

(1). Q and R are weigthing matrices that allow trading off of rms u and rms x. 

  

(2) if                                       then  trade off rms  z VS rms u 

 

0ρ C; ρCQ
T



(3). In the stochastic LQR case, the only difference is that now we don’t have complete state 

 information                           we have only noisy observations   

i .e can’t use full state feedback. 

 

iii vCxy 

 
1k-k

x̂i.e. -K



S. Simrock & Z. Geng,  7th International Accelerator School for Linear Colliders, India, 2012  

95 

(5) We can let Q/R ratio vary and we’ll obtain family of LQG controllers. Can  

Plot rms z vs rms u for each one  

 Trade-Off curves 

 

rms Z 

rms U 

So by specifying (1) system model, (2) noise variances, (3) optimally criterion  

           , and plotting trade off curve completely specifies limit of performance of 

 

System i. e which combinations of                       are achievable by any controller 

-good “benchmark curve”. 

LQGJ

ACHIEVABLE 

 
LQG, Q/R=0.01 

X other 

LQG, Q/R=100 

 1Zrms

 2Zrms

 2Urms 1U rms

 rmsrms,UZ

4.7 Problem Statement 


