Introduction

K. Yokoya (KEK) 2012.11.28 LC School, Indore

Part1: Accelerator Technology and Progress of High Energy Physics

- Mutual relation of physics and accelerator
- Physics demands have been pushing the accelerator technology
- Accelerator development has been pushing high energy physics

Will try to be extremely basic

CRT: Cathode Ray Tube

- Electric voltage between two metallic plates
- Heat the cathode --- something emitted
- Proved the existence of electron in 1897
 J.J. Thompson
- TV monitor (until some years ago)

Use of Natural Radio Isotope

- Experiment by Rutherford
 - Hit "α" particles on gold foil to see atomic structure
 - Existence of nucleus in 1911
- Transformation of nucleus
 - Hit "α" particles on Nitrogen nucleus
 - Transformed to Oxygen nucleus
 - Natural radio isotopes were used
 - MeV accelerator did not exist

Cock-Croft Electro-Static Accelerator

- High voltage by static electricity
- First nuclear transformation by accelerator $H + Li \rightarrow 2 He$
- Cavendish institute in UK, 1932
- 800keV
- Breakdown limit

KEK 750keV Cockcroft-Walton

Repeated question: How can we go to higher energies?

- reuse of CRT
- possible?

- use of alternating voltage
- high frequency needed

Cyclotron

- E.O.Lorence, 1931 Berkeley, California
- Revolution period independent of energy

Relation : radius – magnetic field – beam energy – revolution time

$$T = \frac{2\pi\rho}{v} = 2\pi \frac{m}{eB} = \text{constant}$$

Limitation of cyclotron

- Bigger and bigger magnets for higher energies $\rho[m] = \frac{p[GeV/c]}{0.3B[T]}$
- Revolution time is not actually constant at high energies (special relativity) →
 - < 10 keV for electron
 - up to ~1GeV for proton

$$T = 2\pi \frac{m}{eB} \frac{1}{\sqrt{1 - (v/c)^2}}$$

- Still being used at low energy physics
- advantage: continuous beam

Synchrotron

- Make orbit radius independent of energy
 - Raise magnetic field as acceleration
 - Save volume of magnets
 - Area of field is proportional to p (momentum), not p²
- Gradient magnet needed for focusing
- Now main stream of circular accelerators

Particle Discoveries Before Accelerator Era

- electron 1897
- photon 1905
- proton 1911
- neutron 1932
 ------ Good Old Days ------
- positron 1932
- muon 1937
- pion 1947

These (after neutron) are discovered using cosmic ray particles

• New particle discoveries in 1950's by accelerators

Oxygen atom

1950's

- A few GeV proton synchrotrons
 - Cosmotron (BNL) 3GeV
 - Bevatron (LBL) 6.2GeV
- Many new particles
 - anti-proton, anti-neutron
 - $-\Lambda, \Sigma, \Xi, \Omega,....$

 Systematic description introducing "Quarks" by Gell-Mann in 1964

Bevatron

- Weak-focusing synchrotron
- Lorence Berkely Lab
- Operation start in 1954
- Bev.. = Billion Electron Volt
 = Giga Electron Volt (GeV)
- Up to 6.2 GeV
- Discovered anti-proton in 1955

2012/11/28 LC School K.Yokova http://www.lbl.gov/image-gallery/image-library.html

Principle of Strong Focusing

- Magnet size became an issue even for synchotron of a few GeV scale
- Combination of F-type magnet and D-type can reduce the beam size
- Around 1957

• New issue: accuracy of field and alignment

AGS: Alternating Gradient Synchrotron

- Synchrotron based on strong-focusing principle
- BNL in US
- Operation start 1960, ~20GeV
- Up to ~33GeV
- Discovered
 - J/ψ
 - mu neutrino ν_{μ}

Storage Ring

- Synchrotron can be used to store beams for seconds to days
- Usage
 - Collider
 - Synchrotron light source
- Principle same as synchrotron but
 - no need of rapid acceleration (even no acceleration)
 - longer beam life (e.g., better vacuum)
 - insertion structure (colliding region, undulator, etc)

Linear Accelerator (Linac)

Drift tube type

 The principle is old

- The progress of microwave technology during World War II
- Application to accelerator after WW II

Electron Linac

- Velocity is almost constant above MeV
- No need of changing tube length
- Resonator type

SLAC: Stanford Linear Accelerator

- Electron Linear Accelerator
- 2 miles
- Microwave frequency 2856MHz (wavelength 10.5cm)
- Operation start in 1967
- Study of deep inelastic scattering (to probe proton structure by electron-proton scattering) in ~1968
- Maximum energy ~50GeV (since 1989)
- Still now the longest and highest energy electron linac
- Still an active accelerator SPEAR, PEPII, SLC, LCLS,

Stanford Linear Accelerator

Collider

• What matters in physics is the Center-of-Mass energy

- Energy of each beam can be lower in colliding scheme for given E_{CM}
- Colliding scheme much better in relativistic regime
 - e.g., for electrons, collision of 1GeV electrons is equivalent to 1TeV electron on sitting electron

How to Collide

 Can be done in one ring for same energy beams and opposite charge (e.g., e+e-, proton-antiproton)

More freedom with two rings

PEPII, KEKB, LHC, ...

The First Electron-Positron Collider: AdA

- First beam in 1961 in Italy
- Moved to Orsay, France
- The first beam collision in 1964
- Orbit radius 65cm, collision energy 0.5GeV

Now in the garden

The Second one : Adone

- First beam in 1967
- Circumference 105m
- Collision energy < 3GeV (Unlucky, did not reach J/ψ at 3.1GeV !!)
- Luminosity 3x10²⁹/cm²/s

Synchrotron Radiation

- Charged particles lose energy by synchrotron radiation
- proportional to 1/m⁴
- Loss per turn (electron)

$$U = 0.088 \frac{E^4 [\text{GeV}]}{\rho[\text{m}]} \quad [\text{MeV}]$$

- Not only unwelcomed effects but
 - can be used as light source
 - radiation damping → Damping Ring lecture

The second

Maximum Energy of Collider Ring

- Proton/antiproton
 - Ring size
 - Magnetic field
- Electron/positron
 - Ring size
 - Synchrotron radiation
 - Electric power consumption

Luminosity

•Colliders can reach higher energies compared with fixed target

•But issue is the event rate

Number of events/sec = $\mathcal{L}\sigma$ $\mathcal{L} = f_{collision} \frac{N^2}{S}$

For Gaussian beams

$$\mathcal{L} = f_{rep} \frac{n_b N^2}{4\pi \sigma_x^* \sigma_y^*}$$

 \cap

Colliders demand small beams

Quark Model: Gell-Mann, Zweig 1964

- u quark charge = 2/3 d quark charge=-1/3 s quark charge = -1/3
- p = u + u + d charge = 2/3 + 2/3 1/3 = 1n = u + d + d charge = 2/3 - 1/3 - 1/3 = 0

- Is this just mathematical model?
 I thought so when I was a college student
- existence of quark
 - SLAC, late 1960's

Charm Quark

- Discovery of J/ ψ in 1974
- $e^+e^- \rightarrow \psi$ at SLAC (Richter et.al.)
- $J \rightarrow e^+e^-$ at BNL (Ting et.al.)
- J/ψ = bound state of $c\bar{c}$

Present Particle Model: Standard Model

V

graviton

gluon

- Elementary particles consisting matter
 - ➤ 6 leptons
 - ➤ 6 quarks
 - ➢ in 3 generations
- forces between them mediated by bosons
 - \succ weak interaction Z^0 , W^+ , W^-
 - electro-magnetic int.
 - strong interaction
 - ➤ gravitation

$$\begin{pmatrix} e \\ v_e \end{pmatrix} \begin{pmatrix} \mu \\ v_\mu \end{pmatrix} \begin{pmatrix} \tau \\ v_\tau \end{pmatrix}$$
$$\begin{pmatrix} u \\ d \end{pmatrix} \begin{pmatrix} c \\ s \end{pmatrix} \begin{pmatrix} t \\ b \end{pmatrix}$$

$$\begin{array}{c} \mathbf{u} \quad \mathbf{C} \quad \mathbf{t} \\ \mathbf{d} \quad \mathbf{S} \quad \mathbf{b} \end{array} \quad \mathcal{V} \quad \mathbf{Z}^{\circ} \quad \mathbf{W}^{\pm} \quad \mathbf{g} \\ \end{array}$$

$$\begin{array}{c} \mathcal{V}_{e} \quad \mathcal{V}_{\mu} \quad \mathcal{V}_{\tau} \\ \mathbf{e} \quad \boldsymbol{\mu} \quad \boldsymbol{\tau} \end{array} \quad \mathbf{h} \quad \mathbf{H}^{\circ} \quad \mathbf{A}^{\circ} \quad \mathbf{H}^{\pm} \end{array}$$

Unified Theory of Interactions

- Maxell theory
 - Unification of electric and magnetic fields into electromagnetism
- Weinberg-Salam model
 - ➢ end of 1960's
 - Unify electromagnetic and weak interactions
 - > Introduced new particles Z^0 , W^+ , W^-
 - ➤ They are discovered in 1983
 - Advance of accelerator technology

Next Step of Unification

- Unification of remaining 2 interactions
- Further unification ay higher energies
- All forces be one at the beginning of universe?

Higgs Particle

- Nambu-Goldstone model
- Higgs mechanism
 - Application of Namu-Goldstone
 - Starting with massless particles with symmetry
 - Spontaneous symmetry breaking introduced by Higgs potential;
 - Can create mass of particles coupled to Higgs
 - Applied to Weinberg-Salam
- Higgs: the only particle that had not been discovered in the Standard Model

2012/11/28 LC School K.Yokoya

34

Properties of Higgs

- Generate spontaneous breaking of electro-weak symmetry
- Scalar field coupled to all particles
- Mass of all particles come from the coupling to Higgs
 - Coupling to gauge fields (Z, W, g)
 - Coupling to quark and lepton (Yukawa coupling)
 - Self-coupling
- All these must be confirmed

SPS: Super Proton Synchrotron

- Large proton synchrotron at CERN
- Operation start in 1976
- Reached 500GeV in
- Later remodeled into the first protonantiproton collider

Stochastic Cooling

- Antiproton does not exist naturally
- must be created by collision using accelerators
- "Cooling" needed for collider
- Simon van der Meer invented cooling method in 1968
- Accumulated and cooled in AA (Antiproton Accumulator) and transported to SPS
- SPS \rightarrow SppS
- First proton-antiproton collision in 1981 年
- Discovered W⁺⁻, Z⁰ in 1983

Era of Huge Ring Colliders: Tevatron

- FNAL
- Proton-antiproton
- circumference
 6.3km
- up to ~1TeV
- Completed in 1983
- Superconducting magnet 4.2Tesla
- 1995 Top Quark
- 2009 shutdown

Main Injector in front and Tevatron hehind

Era of Huge Ring Colliders: LEP

- LEP (Large Electron-Positron Collider)
 - CERN
 - Construction started in 1983, operation in 1989
 - circumference 27km
- First target Z⁰ at 92GeV
- Final beam energy 104.5GeV
- end in 2000

LEP revealed Generation of elementary particles = 3
 n = 2.9841 +- 0.0083

Evolution of Proton/Antiproton Colliders

2012/11/28 LC School K.Yokoya

Evolution of Electron-Positron Colliders

LHC

- Latest step to higher enegie
- Reuse of LEP tunnel
 - Circumference 27km
- 14TeV proton-proton
 - magnetic field 8.33 Tesla

http://athome.web.cern.ch/athome/LHC/lhc.html

Technology of Superconducting Magnet was essential

Atlas Detector

2012/11/28 LC School K.Yokoya

Discovery of Higgs-like Boson

- Reported Jul.4, 2012
- At ~126GeV

Part2: Future Accelerators

- Hadron Colliders
- Lepton Colliders
 - e+e-
 - Linear
 - Ring
 - **-** μ+μ-
 - $-\gamma\gamma$
 - New acceleration mechanism

Physics Beyond Standard Model

- Grand Unification
- Super-symmetry
- Dark matter, dark energy
- Extra dimension
- Baryon number asymmetry

Super Symmetry (SUSY)

- Symmetry to exchange fermion and boson
- Important in unification to gravity
- Lightest SUSY particle is a candidate of dark matter
- No indication yet in LHC

Hadron Collider

- Hadron (proton/antiproton) is easier to accelerate to high energies owing to the absence of synchrotron radiation
- Already 14TeV will be reached in a few years (LHC)
- Events are complicated because proton is not an elementary particle
 - p = uud
 - Very high event rate: most of them are unnecessary
- Higher energies are possible only by
 - Higher magnetic field
 - or larger ring

Higgs production in pp

Higgs production in e+e-

2012/11/28 LC School K.Yokoya

HELHC: Higher Energy LHC

- proposed after the luminosity upgrade to HL-LHC
- Upgrade the magnets of LHC
- 8.33 Tesla \rightarrow 20 Tesla ?
- E_{CM} 33TeV
- According to the present price of magnet (if possible), 80km ring is cheaper

THE COIL

- Cable: 22 mm width, 1.62 mm thick, 0.8 mm strand (LBL HD2)
- Three layers are needed for field quality
 - $8 \text{ T} \rightarrow \text{Nb-Ti} (380 \text{ A/mm}^2)$
 - $13 \text{ T} \rightarrow \text{Nb}_3\text{Sn} (380 \text{ A/mm}^2)$
 - $15 \text{ T} \rightarrow \text{Nb}_3\text{Sn} (190 \text{ A/mm}^2)$
 - 20 T \rightarrow HTS (380 A/mm²)

N. turns	%
41	27%
85	57%
24	16%
150	
	N. turns 41 85 24 150

Materials used in the coil (one quarter shown)

VLHC

- Proposed long ago
- Circumference 233km
- Magnetic field 9.8T
- E_{CM} 175TeV

Electron-Positron Collider

- Ring collider is limited due to synchtrotron radiation (→ later slides)
 - LEP ended at E_{cm} =209GeV
- Beyond the radiation limit, the only possibility is linear collider
- First key issues of linear collider are
 - Acceleration gradient
 - Luminosity
 because of single-pass

Luminosity

• Quantity to be maximized

Number of events/sec = $\mathcal{L}\sigma$

($\sigma = cross \ section \ of \ the \ event$)

$$\mathcal{L} = f_{rep} \frac{n_b N^2}{4\pi \sigma_x^* \sigma_y^*}$$

(): typical values for ILC

- f_{rep} repetition rate of beam pulse (5Hz)
- n_b number of bunches in a puilse (1312)
- N number of particles in a bunch (2x10¹⁰)
- σ_x^*, σ_y^* transverse beam size at the collision point (~6nm, ~500nm)

Beamstrahlung

- Synchrotron radiation during collision due to the field by the on-coming beam
- Causes
 - spread in the collision energy
 - background to the experiment
- The critical energy is characterized by the upsilon parameter

$$\Upsilon \equiv \frac{2}{3} \frac{\hbar \omega_c}{E} = \frac{\lambda_e \gamma^2}{\rho} = \gamma \frac{2B}{B_c} = \frac{e}{m^3} \sqrt{\left| (F_{\mu\nu} p^{\nu})^2 \right|}$$
$$B_c = m^2/e \approx 4.4 \text{GTeslas}$$

Factor 2 in front of B comes from the sum of electric and magnetic fields

• Expressed by the beam parameters

$$\Upsilon_{average} = \frac{5}{6} \frac{Nr_e^2 \gamma}{\alpha \sigma_z (\sigma_x + \sigma_y)}$$

• Order of 0.1 in 500GeV collider

Energy loss and number of photons by beamstrahlung

• Average number of photons per electron

$$n_{\gamma} \approx 1.08 \frac{2Nr_e \alpha}{\sigma_x + \sigma_y} U_0(\Upsilon),$$

 $U_0(\Upsilon) \approx \frac{1}{\sqrt{1 + \Upsilon^{2/3}}}$

• Average energy loss

$$\delta_E = \left\langle -\frac{\Delta E}{E} \right\rangle \approx 0.209 \frac{N^2 r_e^3 \gamma}{\sigma_z} \left(\frac{2}{\sigma_x + \sigma_y} \right)^2 U_1(\Upsilon)$$
$$U_1(\Upsilon) \approx \frac{1}{[1 + (1.5\Upsilon)^{2/3}]^2}$$

Average photon energy

$$\left\langle \frac{\omega}{E} \right\rangle = \begin{cases} 0.462\Upsilon & (\Upsilon \to 0) \\ 16/23 = 0.254 & (\Upsilon \to \infty) \end{cases}$$

First Linear Collider: SLC

- Linear collider with one single linac
- completed in 1987 at SLAC
- First Z⁰ event in April 1989
- polarized electron beam (~80%)
- end of run 1998
- luminosity 3x10³⁰ /cm²/s (design 6x10³⁰)
 - high crossection at Z⁰

ILC: International Linear Collider

- Key technology: superconducting RF cavities
- Average accelerating gradient 31.5 MV/m
- Lecture by Barry Barish (this afternoon)

IP and General Parameters			TF = Traveling Focus						$E_{cm} Up_{c}$	grade		
									L Upgrade	A1	B1b	
	Centre-of-mass energy	E_{cm}	GeV	200	230	250	350	500	500	1000	1000	
	Beam energy	E_{beam}	GeV	100	115	125	175	250	500	500	500	
	Collision rate	f _{rep}	Hz	5	5	5	5	5	5	4	4	
	Electron linac rate	f _{linac}	Hz	10	10	10	5	5	5	4	4	
	Number of bunches	n_b		1312	1312	1312	1312	1312	2625	2450	2450	
	Electron bunch population	Ν_	$\times 10^{10}$	2.0	2.0	2.0	2.0	2.0	2.0	1.74	1.74	
	Positron bunch population	N_+	×10 ¹⁰	2.0	2.0	2.0	2.0	2.0	2.0	1.74	1.74	
	Bunch separation	Δt_b	ns	554	554	554	554	554	366	366	366	
	Bunch separation $\times f_{RF}$	$\Delta t_b f_{\rm H}$	RF	720	720	720	720	720	476	476	476	
	Pulse current	I beam	mA	5.8	5.8	5.8	5.8	5.79	8.75	7.6	7.6	
	RMS bunch length	σ_z	mm	0.3	0.3	0.3	0.3	0.3	0.3	0.250	0.225	
	Electron RMS energy spread	$\Delta p/p$	%	0.206	0.194	0.190	0.158	0.125	0.125	0.083	0.085	
	Positron RMS energy spread	$\Delta p/p$	%	0.187	0.163	0.150	0.100	0.070	0.070	0.043	0.047	
	Electron polarisation	Ρ.	%	80	80	80	80	80	80	80	80	
	Positron polarisation	P_+	%	31	31	30	30	30	30	20	20	
	Horizontal emittance	γε _x	μm	10	10	10	10	10	10	10	10	
	Vertical emittance	$\gamma \varepsilon_{v}$	nm	35	35	35	35	35	35	30	30	
	IP horizontal beta function	$\beta_x *$	mm	16.0	14.0	13.0	16.0	11.0	11.0	22.6	11.0	
	IP vertical beta function (no TF)	$\beta_v *$	mm	0.34	0.38	0.41	0.34	0.48	0.48	0.25	0.23	
	IP RMS horizontal beam size	σ_x^*	nm	904	789	729	684	474	474	481	335	
	IP RMS veritcal beam size (no TF)	σ_v^*	nm	7.8	7.7	7.7	5.9	5.9	5.9	2.8	2.7	
	Horizontal distruption parameter	D_x		0.2	0.2	0.3	0.2	0.3	0.3	0.1	0.2	
	Vertical disruption parameter	D_{y}		24.3	24.5	24.5	24.3	24.6	24.6	18.7	25.1	_
	Horizontal enhancement factor	H_{Dx}		1.0	1.1	1.1	1.0	1.1	1.1	1.0	1.0	
tes	Vertical enhancement factor	H_{Dy}		4.5	5.0	5.4	4.5	6.1	6.1	3.5	4.1	
uma	Total enhancement factor	H_D		1.7	1.8	1.8	1.7	2.0	2.0	1.5	1.6	
est	Geometric luminosity	L geom	$\times 10^{34} \text{ cm}^{-2} \text{s}^{-1}$	0.30	0.34	0.37	0.52	0.75	1.50	1.77	2.64	_
lcal		0								-	-	
alyt	Luminosity	L	$\times 10^{34} \text{ cm}^{-2} \text{s}^{-1}$	0.50	0.61	0.68	0.88	1.47	2.94	2.71	4.32	
an	Average beamstrahlung parameter	Y_{av}		0.013	0.017	0.020	0.030	0.062	0.062	0.127	0.203	
	Maximum beamstrahlung parameter	Y_{max}		0.031	0.041	0.048	0.072	0.146	0.146	0.305	0.483	
	Average number of photons / particle	n_{γ}		0.95	1.08	1.16	1.23	1.72	1.72	1.43	1.97	
	Average energy loss	$\delta E_{\rm BS}$	%	0.51	0.75	0.93	1.42	3.65	3.65	5.33	10.20	
	Luminosity	L	$\times 10^{34} \text{ cm}^{-2} \text{s}^{-1}$	0.498	0.607	0.681	0.878	1.50	3.00	3.23	4.31	
_	Coherent waist shift	ΔW_y	μm	250	250	250	250	250	250	190	190	
tion	Luminosity (inc. waist shift)	L	$\times 10^{34} \text{ cm}^{-2} \text{s}^{-1}$	0.56	0.67	0.75	1.0	1.8	3.6	3.6	4.9	
nla	Fraction of luminosity in top 1%	$L_{0.01}/I$		91.3%	88.6%	87.1%	77.4%	58.3%	58.3%	59.2%	44.5%	
SIN	Average energy loss	$\delta E_{\rm BS}$		0.65%	0.83%	0.97%	1.9%	4.5%	4.5%	5.6%	10.5%	
	Number of pairs per bunch crossing	Wpairs	$\times 10^{3}$	44.7	55.6	62.4	93.6	139.0	139.0	200.5	⁰¹ 382.6	
	Total pair energy per bunch crossing	E_{pairs}	TeV	25.5	37.5	46.5	115.0	344.1	344.1	1338.0	3441.0	

Physics at ILC

- Higgs factory (250-500GeV)
 - One single Higgs or more (SUSY) ?
 - Quantum number of vacuum?
 - Confirm the origin of mass
- Top quark (~350GeV)
 - Why heavy?
 - Determine the mass to O(100MeV), relation to H, W, Z
- Mass generation mechanism
 - Higgs self-coupling
- Direct search of new physics
 - Light dark matter invisible at LHC?

CLIC: Compact Linear Collider

- Two-beam scheme
 - Accelerate long train of electron beam to GeV
 - lead it to decelerating structure (PET: Power Extraction Structure)
 - transfer the generated microwave to linac (normal conducting) side by side with PET
 - Huge klystron
 - First proposed at CERN in 1987(?)
 - New scheme proposed by R. Ruth
 - Manipulation of long bunch train
 - Frequency determined by drive bunch interval and PET

Lecture by Frank Tecker (tomorrow)

CLIC (CERN Linear Collider)

Revival of e+e- Ring Colliders ?

- To create Higgs by e+e- \rightarrow ZH requires E_{CM}~240GeV
- This is not too high compared with the final energy 209GeV at LEP

2 Aspects of Synchrotron Radiation Loss

• Energy loss by individual particles must be compensated for

$$U = 0.088 \frac{E^4 [\text{GeV}]}{\rho[\text{m}]} \quad [\text{MeV}]$$

- This (almost) determines RF voltage per turn
 - ~7GeV in LEP tunnel
 - Still possible owing to the improvement of superconducting cavity technology
- But, to get required electric power, you must multiply the beam current
 - Real limitation comes from the wall-plug power
 - Reduce the beam current
 - Small beam size for high luminosity

Beamstrahlung Limitation of e⁺e⁻ Ring Colliders

• Beamstrahlung at high-energy tail causes significant energy loss of electrons/positron

67

Luminosity Scaling of e⁺e⁻ Ring Colliders

V. Telnov, arXiv:1203.6563v, 29 March 2012

• For given Upsilon, the momentum band width must be

$$\eta \equiv [\Delta p/p]_{max} \gtrsim 15\Upsilon$$

• Then, the luminosity at beamstrahlung limit and tuneshift limit is given by

$$\mathcal{L} \propto \frac{\rho P_{SR}}{E^{13/3}} \left(\frac{\xi_y \eta^2}{\varepsilon_{g,y}}\right)^{1/3}$$

- P_{SR} : syn.rad.power
- ρ : bending radius
- ξ_y : tune-shift
- $\varepsilon_{g,y}$: geometric emit.

Luminosity vs. Energy

- Key parameters
 - momentum band width
 - vertical emittance
 - beam-beam tune-shift

Gamma-Gamma Collider

- electron-electron collider
- irradiate lasers just before ee collision
- create high energy photons, which made to collide
- no need of positrons

Kinetics of gamma conversion

• maximum photon energy

$$\omega = \frac{x}{1+x+\xi^2} E_e, \qquad x \equiv \frac{4E_e\omega_L}{m^2}$$

 electron polarization (longitudinal) is essential to create sharp photon energy spectrum

- Optimum laser wavelength $\lambda = \lambda_0$
 - $\lambda_0 = 1 \mu m * (E_e / 250 GeV)$ corresponding to x=4.83
 - pair creation starts if $\lambda < \lambda_0$
 - photon energy lower if $\lambda > \lambda_0$
- required laser flush energy to convert most of the electrons is a few (5-10) Joules

(weakly depends on electron bunch length)

Various Possibilities of yy Colliders

- e+e- linear collider can be converted to gamma-gamma collider
 - ILC
 - CLIC
- 80GeV e- on 80GeV e- converted by laser with x=4.83 gives 66GeV on 66 GeV γ-γ collider (lowest energy to produce H except muon collider)
- CLICHE (2003)
- SAPPHiRE (2012)

2012/11/28 LC School K.Yokoya
Muon Collider

- Properties of muons are quite similar to electron/positron
 - What can be done in e+e- can also be done in $\,\mu^{\scriptscriptstyle +}\mu^{\scriptscriptstyle -}$
- but muon is 200x heavier → can be accelerated to high energies in circular accelerator
- μ⁺μ⁻ collider is much cleaner than e+e- (beamstrahlung negligible)
 except the problem of background from muon decay
- But muons do not exist naturally
 - need cooling like antiproton
- "Ionization cooling" invented by Skrinsky-Parkhomchuk 1981, Neuffer 1983

Ionization cooling test at MICE

2012/11/28 LC School K.Yokoya

Create and Cool Muon Beam

- Can be created by hadron collision
- Muons decay within 2µs in the rest frame
 - must be accelerated quickly
- Staging
 - Higgs factory at E_{cm}=126GeV
 - Neutrino factory
 - TeV muon collider
- Long way to collider
- B. Palmer's lecture

Plasma Accelerator

- Linac in the past has been driven by microwave technology
- Plane wave in vacuum cannot accelerate beams: needs material to make boundary condition
- Breakdown at high gradient
 - binding energy of matter: eV/angstrom = 10GeV/m
- Need not worry about breakdown with plasma – can reach > 10GeV/m

Plasma Wave

- Plasma is a mixture of free electrons and nucleus (ions), normally neutral
- By perturbation, electrons are easily moved while nuclei are almost sitting, density modulation created.
- The restoring force generates plasma wave
- Charged particles on the density slope are accelerated, like surfing.
- Plasma oscillation frequency and wavelength are given by

$$\omega_p = \sqrt{\frac{e^2}{\epsilon_0 m_e}} n_0, \qquad \lambda_p = \frac{2\pi c}{\omega_p} = \frac{3.3 \times 10^4}{\sqrt{n_e [\text{cm}^{-3}]}} \quad \text{[m]}$$
$$n_e = \text{plasma density}$$

How to Generate Plasma Wave

- PWFA (Plasma Wakefield Accelerator)
 - Use particle (normally electron) beam of short bunch
- LWFA (Laser Wakefield Accelerator)
 - Use ultra-short laser beam
- In both cases the driving beam
 - determines the phase velocity of plasma wave, which must be close to the velocity of light
 - must be shorter than the plasma wavelength required
 - can also ionize neutral gas to create plasma

LWFA

- laser pulse length ← plasma wave wavelength ← plasma density
- Laser intensity characterized by the parameter a₀
 - $-a_0 < 1$: linear regime
 - $-a_0 > 1$: blow-out regime

 $a_0 \approx 8.5 \times 10^{-10} \lambda_L [\mu \text{m}] I^{1/2} [\text{W/cm}^2]$

• Accelerating field

$$E = E_0 \frac{a_0^2/2}{\sqrt{1 + a_0^2/2}}$$
$$E_0 = cm_e \omega_p / e = 96 n_0^{1/2} [\text{cm}^{-3}]$$

Blowout and Linear Regime

- The gradient can be higher in the blowout regime but
 - difficult to accelerate positron
 - very narrow
 region of
 acceleration
 and focusing

transve rse field

plasma

density

field

Figure from ICFA Beamdynamics News Letter 56

Limitation by Single Stage

- Laser must be kept focused (Rayleigh length)
 - solved by self-focusing and/or preformed plasma channel
- Dephasing: laser velocity in plasma
 - longitudinal plasma density control
- Eventually limited by depletion
 - depletion length proportional to $n_0^{-3/2}$
 - acceleration by one stage proportional to I/n_0
- Multiple stages needed for high energy, introducing issues
 - phase control
 - electron orbit matching

Concept of LWFA Collider

Example Beam Parameters of 1/10TeV Collider

Case: CoM Energy	1 TeV	1 TeV	10 TeV	10 TeV
(Plasma density)	$(10^{17} \mathrm{cm}^{-3})$	$(2 \times 10^{15} \text{ cm}^{-3})$	$(10^{17} \mathrm{cm}^{-3})$	$(2 \times 10^{15} \text{ cm}^{-3})$
Energy per beam (TeV)	0.5	0.5	5	5
Luminosity $(10^{34} \text{ cm}^{-2} \text{s}^{-1})$	2	2	200	200
Electrons per bunch (×10 ¹⁰)	0.4	2.8	0.4	2.8
Bunch repetition rate (kHz)	15	0.3	15	0.3
Horizontal emittance $\gamma \varepsilon_x$ (nm-rad)	100	100	50	50
Vertical emittance $\gamma \varepsilon_{\nu}$ (nm-rad)	100	100	50	50
β* (mm)	1	1	0.2	0.2
Horizontal beam size at IP σ_x^* (nm)	10	10	1	1
Vertical beam size at IP σ_y^* (nm)	10	10	1	1
Disruption parameter	0.12	5.6	1.2	56
Bunch length σ_z (µm)	1	7	1	7
Beamstrahlung parameter Υ	180	180	18,000	18,000
Beamstrahlung photons per e, n_{γ}	1.4	10	3.2	22
Beamstrahlung energy loss δ_E (%)	42	100	95	100
Accelerating gradient (GV/m)	10	1.4	10	1.4
Average beam power (MW)	5	0.7	50	7
Wall plug to beam efficiency (%)	6	6	10	10
One linac length (km)	0.1	0.5	1.0	5

From ICFA Beamdynamics News Letter 56

Example Laser Parameters of 1/10TeV Collider

Case: CoM Energy	1 TeV	1 TeV	10 TeV	10 TeV
(Plasma density)	$(10^{17} \mathrm{cm}^{-3})$	$(2 \times 10^{15} \text{ cm}^{-3})$	$(10^{17} \mathrm{cm}^{-3})$	$(2 \times 10^{15} \text{ cm}^{-3})$
Wavelength (µm)	1	1	1	1
Pulse energy/stage (kJ)	0.032	11	0.032	11
Pulse length (ps)	0.056	0.4	0.056	0.4
Repetition rate (kHz)	15	0.3	15	0.3
Peak power (PW)	0.24	12	0.24	12
Average laser power/stage (MW)	0.48	3.4	0.48	3.4
Energy gain/stage (GeV)	10	500	10	500
Stage length [LPA + in-coupling] (m)	2	500	2	500
Number of stages (one linac)	50	1	500	10
Total laser power (MW)	48	3.4	480	34
Total wall power (MW)	160	23	960	138
Laser to beam efficiency (%) [laser to wake 50% + wake to beam 40%]	20	20	20	20
Wall plug to laser efficiency (%)	30	30	50	50
Laser spot rms radius (µm)	69	490	69	490
Laser intensity (W/cm ²)	3×10^{18}	3×10^{18}	3×10^{18}	3×10^{18}
Laser strength parameter a_0	1.5	1.5	1.5	1.5
Plasma density (cm ⁻³), with tapering	10 ¹⁷	2×10^{15}	10 ¹⁷	2×10^{15}
Plasma wavelength (mm)	0.1	0.75	0.1	0.75

From ICFA Beamdynamics News Letter 56

What's Needed for Plasma Collider

- High rep rate, high power laser
- Beam quality
 - Small energy spread << 1%
 - emittance preservation
- High power efficiency from wall-plug to beam
 - − Wall-plug \rightarrow laser
 - − Laser \rightarrow plasma wave
 - − plasma wave \rightarrow beam
- Staging
 - laser phase
 - beam optics matching
- Very high component reliability
- Low cost per GeV
- Colliders need all these, but other applications need only some of these
- Application of plasmas accelerators would start long before these requirements are established

Piramid of Accelerators

Cannot replace the head only

Summary

- Accelerator Technology has been progressed in parallel with High Energy Physics
- New technologies are waiting for future development of high energy physics
- But each of them takes long time to realize
 - e+e- LC started in mid 1980's
 - muon collider early 1990's
- Progress of accelerator technology bas been backed-up by application