Problems Lecture 1: Linac Basics

1) Calculate the relative longitudinal motion of two electrons with an energy of 9 GeV and a difference of 3% over a distance of 21 km .
2) Calculate the solutions to Hill's equation for $K(s)=K_{0}>0$.
3) Calculate the solutions to Hill's equation for $K(s)=0$ assuming $\beta(s=0)=\beta_{0}$ and $\beta^{\prime}(s=0)=0$. (Only for the accelerator experts)
4) How much energy is roughly stored in one ILC cavity at nominal gradient?

Solutions: Linac Basics

1) We calculate

$$
\gamma=\frac{E_{0}}{m c^{2}} \approx \frac{9 \mathrm{GeV}}{0.511 \mathrm{MeV}} \approx 18000
$$

then we use

$$
\gamma=\frac{1}{\sqrt{1-\beta^{2}}}
$$

to find an approximation for β

$$
\beta \approx 1-\frac{1}{2 \gamma^{2}} \approx 1-1.5 \times 10^{-9}
$$

over the length of a linac 21 km the longitudinal delay compared to light is $\approx 32 \mu \mathrm{~m}$ for two particles which have a energy difference of $\Delta \gamma$ the relative longitudinal motion would be

$$
\beta_{1}-\beta_{2} \approx \frac{1}{2 \gamma^{2}}-\frac{1}{2(\gamma+\Delta \gamma)^{2}} \approx \frac{\Delta \gamma}{\gamma^{3}}
$$

for an example of 3% the motion is $\approx 1.94 \mu \mathrm{~m} \ll \sigma_{z}$
Note: Due to the acceleration the effect is even smaller

Solutions: Linac Basics

2) We use $K(s)=$ const >0.

- We know the solution is a harmonic oszillation with a fixed amplitude

$$
x=A \cos \left(\phi(s)+\phi_{0}\right)
$$

for the beta-function this should correspond to a constant value of beta, which we call β_{0}

- We now need to check that this fulfills the differential equation for β
- Ansatz: $\beta=\beta_{0}, \beta^{\prime}=0$ and $\beta^{\prime \prime}=0$:

$$
\begin{gathered}
\frac{\beta^{\prime \prime} \beta}{2}-\frac{\beta^{\prime 2}}{4}+K \beta^{2}=1 \\
\Rightarrow K \beta_{0}^{2}=1
\end{gathered}
$$

Hence

$$
\beta_{0}=\frac{1}{\sqrt{K}}
$$

Now one can plug this into the equation of motion to see that one recovers the known solution for a harmonic oszillator. ϵ is defined by the initial condition.

Solutions: Linac Basics

3) $K=0$
$x=x_{0}+x^{\prime}(0) s$
Ansatz: β is a polynom of second order

- We use $\beta^{\prime}(s=0)=0, \beta(s)=\beta_{0}+\frac{s^{2}}{\beta_{0}}$

$$
\begin{gathered}
\frac{\beta^{\prime \prime} \beta}{2}-\frac{\beta^{\prime 2}}{4}+K \beta^{2}=1 \\
\Rightarrow \frac{\beta^{\prime \prime} \beta}{2}-\frac{\beta^{\prime 2}}{4}=1 \\
\Rightarrow \frac{1}{2}\left(\beta_{0}+\frac{s^{2}}{\beta_{0}}\right)\left(\frac{2}{\beta_{0}}\right)-\frac{1}{4}\left(\frac{2 s}{\beta_{0}}\right)^{2}=1 \\
\Rightarrow 1+\frac{s^{2}}{\beta_{0}^{2}}-\frac{s^{2}}{\beta_{0}^{2}}=1
\end{gathered}
$$

4) Assuming $R / Q=1 \mathrm{k} \Omega$ we find approximately 120 J

$$
E=\frac{(G L)^{2}}{2 \pi f_{R F} R / Q}
$$

