

Beam Instrumentation for Linear Collider

With a big "Thank You" to T. Lefevre for most of the splendid slides....

- Recap: Why Linear Collider ?
- What is special about the beam instrumentation of a Linear Collider ?
- What are the main Instruments ?

Why do we need Leptons

Higgs event Simulation

LHC

ILC

Hadron Colliders (p, ions):

• Hadrons are composite objects

- Only part of proton energy available
- Huge QCD background

Lepton Colliders:

- Well defined initial state
- Momentum conservation eases decay product analysis
- Beam polarization

No circular e⁺e⁻ collider after LEP

Energy loss dramatic for electrons

$$\Delta \boldsymbol{\mathcal{E}_{SR}}[\text{GeV}] = 6 \cdot 10^{-21} \cdot \gamma^4 \cdot \frac{1}{r[km]}$$

 γ_{proton} / $\gamma_{\text{electron}} \approx 2000$

Impractical scaling of LEP II to $E_{cm} = 500 \text{ GeV}$ and $L = 2 \cdot 10^{34}$

- 170 km around
- 13 GeV/turn lost
- 1 A current/beam
- 26 GW RF power
- Plug power request > Germany

What is the difference between Circular and Linear

Linear Colliders are pulsed !!

Luminosity of high energy e⁺ e⁻ Collider

Particle physicists ask to increase Luminosity with energy...

What are the projects under-study ?

FRIENDLY RIVALRY

- 1.3 GHz supra conducting cavities
- Gradient 32 MV/m
- Energy: 500 GeV, though upgradable to 1.0 TeV

- 12GHz normal conducting cavities
- Gradient 100 MV/m
- Energy : 3 TeV

T. Lefevre

Collider luminosity [cm⁻² s⁻¹] is approximately given by

- n_b = bunches / train
- N = particles per bunch

$$\mathcal{A}_{D}^{\prime\prime}$$
 = beam-beam enhancement factor

A linear collider uses the beam pulses only once:

- Need to accelerate lots of particles
- Need very small beam sizes

The small beam size challenge

LEP: $\sigma_x \sigma_y \approx 130 \times 6 \ \mu m^2$ **ILC**: $\sigma_x \sigma_y \approx 500 \times (3-5) \ nm^2$

T. Lefevre

Luminosity issue with intense beams - Disruption

Field of the opposite particle will distort the other beam during collision:

- Pinch effect (can become instable if two strong)
- Beam-beam deflections use to adjust beam overlap and luminosity

beam-beam characterised by **Disruption Parameter**:

$$D_{x,y} = \frac{2r_e N \sigma_z}{\gamma \sigma_{x,y} (\sigma_x + \sigma_y)}$$

 $\sigma_{\rm z}$ = bunch length

Enhancement factor (typically $H_D \sim 1.5 \div 2$) is given by:

$$H_{Dx,y} = 1 + D_{x,y}^{1/4} \left(\frac{D_{x,y}^3}{1 + D_{x,y}^3} \right) \left[\ln\left(\sqrt{D_{x,y}} + 1\right) + 2\ln\left(\frac{0.8\beta_{x,y}}{\sigma_z}\right) \right]$$

Luminosity issue with intense beams - Disruption

T. Lefevre

Luminosity issue with intense beams - Beamstrahlung

• Generation of Synchrotron Radiation photons of particles in the strong EM field of the opposite bunch

• High energy Beamstralung photons can convert in strong field into e⁺/e⁻ pairs: background for the detector

Coherent e⁺e⁻ pairs

- Direct photons conversion in strong fields
- Negligible for ILC but high for CLIC : Few 10⁸ particles per Bunch crossing

Incoherent e⁺e⁻ pairs

- Photons interacting with other electron/photon
- Few 10⁵ particles/Bunch crossing

<u>rms relative energy loss</u> induced by <u>Beamstrahlung</u>

$$\delta_{BS} = 0.86 \frac{er_e^3}{2m_0 c^2} \left(\frac{E_{cm}}{\sigma_z}\right) \frac{N^2}{\left(\sigma_x + \sigma_y\right)^2}$$

we would like to make $(\sigma_x \sigma_y)$ small to maximise luminosity and keep $(\sigma_x + \sigma_y)$ large to reduce δ_{SB}

Trick: use "flat beams" with $\sigma_x >> \sigma_v$

$$\delta_{BS} \propto \left(rac{E_{cm}}{\sigma_z}
ight) rac{N^2}{\sigma_x^2}$$

Rule:

- Make σ_v as small as possible to achieve high luminosity.

$\delta_{BS} \sim 2.4\%$ @ ILC -- $\delta_{BS} \sim 29\%$ @ CLIC

T. Lefevre

Hour glass effect – Bunch length

For achieving small Beta function (small beam size) at IP, the beta function rapidly increases as the particle move away from the collision point

Variation of beam size along the bunch

T. Lefevre

Hour glass effect – Bunch length

T. Lefevre

A final luminosity scaling for Linear collider ?

$$L \propto \frac{\eta_{RF} P_{RF}}{E_{cm}} \sqrt{\frac{\delta_{BS}}{\varepsilon_{n,y}}} H_D \quad \text{with} \quad \beta_y \approx \sigma_z$$

- high RF-beam conversion efficiency η_{RF} and RF power P_{RF}
- small normalised vertical emittance $\varepsilon_{n,y}$
- strong focusing at IP (small β_v and hence small σ_z)

- Generation of small emittance
- Conservation of small emittance
- Generation and acceleration of short bunches

beam delivery system,

T. Lefevre

T. Lefevre

Lesson from the first Linear collider : SLC

Built to study the Z₀ and demonstrate linear collider feasibility

Single bunch Energy = 92 GeV Luminosity = 3e30

Had all the features of a 2nd gen. LC except both e+ and e- shared the same linac

T. Lefevre

International Linear Collider / Compact Linear Collider

T. Lefevre

Main Instrumentation challenge for Linear Collider

- Measuring small emittance and small beam size
 ~ 1um spatial resolution Transverse Profile Monitors
- Measuring Short bunch length
 - ~ 20fs time resolution Longitudinal Profile Monitors
- Conservation of emittance over long distances relies on precise alignment high accuracy (5um) high resolution (50nm) Beam Position Monitor

Not talking about Damping rings Beam size monitor (lectures by Volker) using Synchrotron radiation (Interferometer, P-Polarisation, X-ray imaging systems)

Measuring small beam size in a Linear Collider

- Required high precision from the Damping ring to the Interaction Point (IP)
 - Beam energy ranges from 2.4GeV \rightarrow 1.5TeV
 - Tens of km of beam lines Big number of instruments
- Flat Beams ($\varepsilon_x >> \varepsilon_v$) : Think of a flat noodle !

- Small beam sizeHigh beam charge

	ILC	CLIC
Beam Charge (nC)	7875	190
Hor. Emittance (nm)	655	40
Ver. Emittance (nm)	5.7	1

High Charge Densities

 $> 10^{10} \text{ nC/cm}^2$

The thermal limit for 'best' material (C, Be, SiC) is 10⁶ nC/cm²

T. Lefevre

'Beam Profile Horror Picture Show'

Intercepting devices limited to single (or few) bunch mode

T. Lefevre

High Resolution Imaging System using OTR

• Diffraction effect would determine the resolution limit of the measurements

$$\Delta x \ge \frac{\lambda \text{ (wavelength)}}{\theta \text{ (useful opening angle)}}$$

OTR angular distribution: Peak at 1/γ but large tails
 Problem for very high energy particles

• Aperture of the focussing lens : $\theta >> 1/\gamma$

X. Artru et al, NIM AB 145 (1998) 160-168

C. Castellano and V.A. Verzilov, Physical Review STAB 1, (1998) 062801

High Resolution Imaging System using OTR

• Depth of field limits the resolution because the image source is not normal to the optical axis

• Imaging small beam size \rightarrow large magnification \rightarrow short Depth of field (Df)

T. Lefevre

• Non destructive alternative for beam size measurement (not imaging anymore)

T. Lefevre

- Sensitivity to beam size is given by the visibility of the interference pattern
- Vertical (hor) polarization component depends on the vertical (hor) beam size

T. Lefevre

- Push the technology in the EUV regime (~100nm) to bring the resolution in the 1-10 μ m range
- Not usable for ultra-high beam energy : >10GeV

 \rightarrow

Used in Linear collider from the Damping to the Main Linac (40kms of beam line - ~70 Devices in CLIC)

• Mechanical challenge for the slit technology

Baseline solution for linear collider: high spatial resolution would rely on Laser Wire Scanner

Laser Beam

- λ_0 : Laser wavelength
- ω_0 : Laser waist size
- Z_R : Rayleigh range

Electrons Beam σ_y : ver. beam size σ_x : hor. beam size

• The number of X-rays produced is given by $N_{\text{interaction}} \approx \frac{\sigma \cdot N_e \cdot N_{laser}}{A}$ with A the interaction area, N_e and N_{laser} are the number of electrons and photons in A

• High spatial resolution need very focused laser beam: Need a optimum Focusing system

Minimize spherical aberration using several lenses

T. Lefevre

Design for ATF2 LWS by G. Blair et al

FIG. 7. Color online. Diagram of the final focus lens.

Interface number	Shape	Radius [mm]	Thickness [mm]	From	To
1	Even asphere	117.126106	7.093310	Air	Silica
2	Spherical	-250.070725	1.987140	Silica	Air
3	Spherical	33.118324	5.309160	Air	Silica
4	Spherical	274.998672	17.985135	Silica	Air
5	Spherical	Infinity	12.700000	Air	Silica
6	Spherical	Infinity	24.075710	Silica	Vacuum

T. Lefevre

Design for ATF2 LWS by G. Blair et al

T. Lefevre

• At high energy, the Compton cross section gets smaller

T. Lefevre

• At high energy (>10GeV) the detection system can be easily done either using the scattered photons or the scattered electrons

Measuring Short bunches with femtosecond time resolution

• Want capability of compressing by a factor 50: Done in two steps to avoid emittance dilution

	ILC	CLIC linac	XFEL	LCLS
Beam Energy (GeV)	250	1500	20	15
Linac RF Frequency (GHz)	1.3	12	1.3	2.856
Bunch charge (nC)	3	0.6	1	1
Bunch Length (fs)	700	150	80	73

- High resolution monitor for single shot measurement
 - RF deflector : Excellent time resolution but destructive
 - Coherent Diffraction radiation for online measurement and feedback system
 - EO techniques for single shot longitudinal profile monitoring

Compact Linear Collider

Bunch compressors

T. Lefevre

EO Temporal decoding

Encoding the bunch long. Profile in an intensity modulation of a laser pulse amplitude

Measured the laser pulse leaving EO crystal via single-shot cross correlation in BBO using a short laser pulse

Phys Rev Lett **99**, 164801 (2007) Phys. Rev. ST, **12**, 032802 (2009)

W.A. Gillespie & S. Jamison

Encoding Time resolution

Spectral limitations of the Crystal

W.A. Gillespie & S. Jamison

T. Lefevre

Encoding Time resolution

•Thin crystal (>10μm)

•Consider new materials GaSe, DAST, MBANP or poled organic polymers?

W.A. Gillespie & S. Jamison

T. Lefevre

Temporal decoding

The non-collinear nature of the cross correlation geometry provides a mapping of time to spatial position in the BBO crystal and the CCD

- Very short laser pulse for time resolution
- High laser energy (1mJ) for frequency doubling efficiency

W.A. Gillespie & S. Jamison

T. Lefevre

Conserving small Emittance along the Main Linac

- <u>Dispersive emittance dilutions : offset of quadrupoles</u>
 - Beam based alignment to define a precise reference using high precision BPM (50nm resolution)
 - Dispersion free-steering Align quadrupoles precisely
 - High resolution cavity BPM (50nm for CLIC)
 - Long linac \rightarrow large number of BPMs: 2000@ILC 4000@CLIC

T. Lefevre

Conserving small Emittance along the Main Linac

Wakefields in accelerating structures (damping of high order mode)

Bunches passing through an accelerating structure off-centre excite high order modes which perturbs later bunches

- Tolerances for acc. Structures alignment
- Cavity alignment at the 300 μm level @ ILC compared to 5 μm @ CLIC
- Need wakefield monitor to measure the relative position of a cavity with respect to the beam

Proposed correction scheme

- > Wakefield kicks from misaligned AS can be cancelled by another AS
- > One WFM per structure (142000 monitors) and mean offset of the 8 AS computed
- ➢ WFM with 5um resolution
- > Need to get rid of the 100MW of RF power at 12GHz present in the structures

WakeField Monitor design

Opposite ports signals are in phase

Opposite ports signal have opposite phase

When we substract the opposite port signals, the monopole mode is cancelled and the dipole mode amplitude is increased

F. Peauger

WakeField Monitor design

T. Lefevre

Reserve Slides follow

T. Lefevre

Luminosity issue with intense beams - Disruption

due to 1% initial offset between beams

T. Lefevre

Damping Ring : the mandate ?

Damping ring necessary to "cool" the beam to an extremely low emittance in all three dimensions

•	Higł	n-bunch de	ensity	
	_	Emittar choice a	nce dominate and alignme	ed by Intrabeam Scattering, driving energy, lattice, wiggler technolog nt tolerances
	-	Electro	<mark>n cloud</mark> in e⁺	ring imposes chamber coatings and efficient photon absorption
		Fast lor	<u>Instability</u>	in the e ⁻ ring necessitates low vacuum pressure
· PARAMETER	– Rep –	space of etition rat Nastaa	harge sets e e and bunc mping achie	hergy, circumference limits h structure ved with wigglers
bunch population (10 ⁹)	-	RF_freq peakoar	uency reduc d average c	tion considered due to many challenges @ 2GHz (power source, high urrent)
• • • • • • • • • • • • • • • • • • •	Out -	put emit Tight jit	tance stab ter toleranc	lity e driving kicker technology
number of bunches/train	Pos _	itron bea	m dirgensi	ons from source allenges (energy acceptance, dynamic aperture) solved with lattice
number of trains		design	1	
Repetition rate [Hz]		120	50	
Extracted hor. normalized emittance [nm]		2370	<500	
Extracted ver. normalized emittance [nm]		<30	<5	
Extracted long. normalized emittance [keV.m]		10.9	<5	
Injected hor. normalized emittance [µm]		150	63	
Injected ver. normalized emittance [µm]		150	1.5	
Injected long. normalized emittance [keV.m]		13.18	1240	

T. Lefevre

Damping Ring : the mandate ?

Racetrack shape with

- 96 TME arc cells (4 half cells for dispersion suppression)
- 26 Damping wiggler FODO cells in the long straight sections (LSS)
- Space reserved upstream the LSS for injection/extraction elements and RF cavities

Damping Ring : the Challenge ?

Radiation paraPower per dipole [k]Power per wiggler [k]Total power [MW]Critical energy for diCritical energy for widRadiation opening and	ameters N] KW] pole [keV] iggler [keV] ngle [mrad]	DR 1.3 18.7 0.61 19.0 40.7 0.11		90% of radi wigglers Design of a critical to p wigglers ag Radiation a (but less cri	ation pow n absorpti rotect ma ainst quer bsorption tical, i.e. s	ver coming fro ion system is chine compo nch equally impo similar to ligh	om the 52 SC necessary and nents and ortant for PDR it sources)
F Ver collimator W1	Hor collimator	A 4-1	wigglers	s scheme	V 3 Ho Des	K. Zo D. Sch	lotarev, oerling W4
- Gap of 13mm (10W Combination of coliī Terminal absorber a	Element Horizontal Absorb Vertical Absorb mators and abs t the end of the	I orber (er () orbers (straight	Length [m]).5).5 PETKAIII t section (V [mm] 13.5 9.5 .ype, power 10kW)	H [mm] 12.3 12.5 density o	Shape Rectangular Rectangular	– 7 cm)

T. Lefevre

Very high synergy with

	CLIC DR	SLS	Diamond	Soleil
Beam Energy (GeV)	2.86	2.4	3	2.75
Ring Circonfrence (m)	493	288	561.6	354
Bunch charge (nC)	0.6	1	1	0.5
Energy Spread (%)	0.134	0.09	0.1	0.1
Damping times (x,y,E) (ms)	2,2,1	9,9,4.5	-	6.5,6.5,3.3
Orbit stability (um)	1	1	1	1

300PUs, turn by turn (every **1.6µs**)

10μm precision, for linear and non-linear optics measurements.

2μm precision for orbit measurements (vertical dispersion/coupling correction + orbit feedback).

WB PUs for bunch-by-bunch (bunch spacing of **0.5ns** for **312** bunches) and turn by turn position monitoring with high precision ($2\mu m$) for injection trajectory control, and bunch by bunch

Damping Ring Instrumentation

- Turn by turn transverse profile monitors (X-ray?) with a wide dynamic range:
 - Hor. geometrical emittance varies from 11nm.rad @ injection to 90pm.rad @ extraction and the vertical from 270pm.rad to 0.9pm.rad.

T. Lefevre "Beam Instrumentation for Linear Collider" - 2nd Ditanet School on Beam diagnostic - Stockholm–2011

Beam - Beam scan at IP

Deflection at BPM and BPM output

T. Lefevre

Temporal decoding

Cavity BPM

- "Pillbox" cavity BPM
 - Eigenmodes:

$$f_{mnp} = \frac{1}{2\pi\sqrt{\mu_0\varepsilon_0}} \sqrt{\left(\frac{j_{mn}}{R}\right)^2 + \left(\frac{p\pi}{l}\right)^2}$$

- Beam couples to $E_z = CJ_1\left(\frac{j_{11}r}{R}\right)\cos \emptyset e^{i\omega t}$ dipole (TM₁₁₀) and monopole (TM₀₁₀) modes
- Common mode (TM₀₁₀) suppression by frequency discrimination
- Orthogonal dipole mode polarization (xy cross talk)
- Transient (single bunch)
 response (Q_L)
- Normalization and phase reference

T. Lefevre

Cost of Circular Accelerator : Length + Energy lost replaced by RF power ~ E^2

Cost of Linear Accelerator : Length \sim E

