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Lepton ColliderLepton Collider

●e+e- collision is a simple interaction.

●The initial states is well defined.

●Easy to reconstrcut the final states. 

●This full reconstruction is powerful and 

essential for e+e- colliders. 

e+

e-

X state
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• Collision between elementary particles (leptons).
• The initial state is well defined. 
• Full reconstruction of events. 

Hadron collider and Lepton ColliderHadron collider and Lepton Collider

Lepton Colliders

• Collision between composite particles (protons).
• Initial state is not defined. 
• Extremely high energy, high event rate, large noise.

Hadron Collider
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Well defined initial statesWell defined initial states
● Electron and position are spin ½ fermions. Two eigen spin states.

● In SU(2)xU(1) gauge theory, these two spin eigen states are 
different particles which has different weak Iso-spin and hyper 
charge. 

 

 

● Ideal well defined initial states means that the beam contains only 
one spin state.

● Practicall, the beam should be polarized.  

l L≡(
νeL
eL )

eR

IW=
1
2
, Y W=−1

IW=0, Y W=−2

P≡
N R−N L

N R+N L
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Effective PolarizationEffective Polarization

●One of the beam has to be 
polarized.
●If both beams were polarized, 
polarization effectively could be 
close to 100% with less 
ambiguity. 

Peff≡
Pe−P p

1−Pe P p

Δ Peff

Peff

=
1−Pe P p

1+Pe P p

Δ Pe

Pe

G. Moortgat-pick
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PolarizationPolarization

● In e+e- collider, WW-scattering 
is the biggest background.

● Polarized electron (and also 
positron) can compensate this 
background. 

● Polarization is important not 
only to define the initial state, 
but also to improve the 
sensitivity for new discovery. 

e+ : 60% Polarizatione+ : 60% Polarization

 with GRACE System Developed by 
Computational Physics Group in KEK

e-:80% Polarization
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InjectorInjector
● What is the injector?

● Generate accelerate-able particle beams;

● What is the accelerate-able beams?
● Right amount : Charge
● Right shape : Beam size, emittance, bunch length
● Right direction:  along beam line
● Right time : timing, phase
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Electron GunElectron Gun
● What is electron gun?

● Generate electron beam 
– Right amount : Charge
– Right shape : Beam size, emittance, bunch length
– Right direction:  beam line
– Right time : timing, phase

3.2nC

Extraction Field
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Bunching (1)Bunching (1)
● Bunching : Bunch the beam. What is the bunch?

● Beam : collimated particle flow. 
● Bunch : collimated and clustered particle flow. The 

length should be short enough comparing to the RF 
period for uniform acceleration. 

Beam Bunch
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Bunching (2)Bunching (2)
● Bunching: Shorten the longitudinal length of the 

beam. 
– Right amount : Charge
– Right shape : Beam size, emittance,bunch length
– Right direction:  beam line
– Right time : timing, phase

3.2nC

Introduction Electron Emission Related Physics Electron Gun e- Source for LCs Laser

Bunching



 27 Nov. - 8 Dec., Indore, India
7th Accelerator School for Linear Colliders

13

Injector (2)Injector (2)

3.2nC

To Acc.

Thermionic Cathode
Photo-cathode
Field emitter

Extraction Field

CW Beam
Long bunch beam
Short bunch beam

DC field
RF field
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Electron Emission
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Electron Emission (1)Electron Emission (1)
● Thermal electron emission : Electron emission from the 

heated material (typically 1000 - 3000K).

● Field emission: Emission from the high field gradient 
surface.

● Photo-electron emission: Emission  by photo-electron effect.

● Secondary electron emission: Emission induced by electron 
absorption.
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Electronic StatesElectronic States
● Electrons in a metal are confined 

in a well potential and distributed  
according to Fermi-Dirac 
Distribution.

● T=0: Electrons occupy the energy 
states up to Fermi-level (Fermi 
energy, Ef).

● T>0: Electron distribution 
extends to higher energy state due 
to the thermal energy.
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Electronic States (2)Electronic States (2)

n(ϵ)=D (ϵ) f (ϵ) (1−1)

D (ϵ)=
2m2

h3 dx dy dz dv x dv y dv z (1−2)

Electron density in a metal is product of state density  
D(ε) and distribution function f(ε),

N (ϵ)=∫0

E

f (ϵ)D (ϵ)d ϵ (1−4)

f (ϵ)=
1

exp (
ϵ−μ

kT )+1
(1−3)

State density in phase space (x, vx) – (x+dx, vx+dvx).... is

Distribution function f(ε) is given by Fermi-Dirac function

Number of electron with energy ε<E is
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Thermal Electron EmissionThermal Electron Emission

► If the temperature is sufficiently 
high, so that electrons are 
distributed up to more than the 
vacuum level (E0), the electrons 
escape out to the outside. 

► The gap between the vacuum level 
and the Fermi energy is Work 
function, φ, which characterize the 
thermal emission.  

E>E0=E f+ϕ
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Emission Density (1)Emission Density (1)
Number of emitted electron:
In depth (z-direction)
 
Kinetic energy for z-direction must be more than 
vacuum potential energy, μ+Φ
 
 
 
Number of electron emitted from the cathode is give 
by

z≤v zΔ t (1−5)

v z≥v vac≡√2(μ+ϕ)
m

(1−6)

N=∫dx∫dy∫0

vzΔ t

dz∫
−∞

+∞

dv x∫−∞
+∞

dv y∫vvac
+∞

dv z f (ϵ)D(ϵ) (1−7)
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Emission Density (2)Emission Density (2)
By integrating x, y, z and inserting distribution function,

From this equation, emission density per unit time is obtained

N= x y t
2m3

h3 ∫−∞
∞

dvx∫−∞
∞

dv y∫vvac
∞

dv z
v z

exp −kT 1

1−8

≡
N

 x y t
=

2m3

h3 ∫−∞
∞

dvx∫−∞
∞

dv y∫vvac
∞

dv z
v z

exp −kT 1

1−9
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Emission Density (4)Emission Density (4)
Because ε-μ≫kT, f(ε) is approximated as

ϵ=
m
2
(v x

2+v y
2+v z

2)

=
2m3

h3 ∫−∞
∞

dvx∫−∞
∞

dv y∫vvac
∞

dv z v z exp −kT  1−11

1

exp (
ϵ−μ

kT )+1
∼exp (

μ−ϵ

kT ) (1−10)

=
2m3

h3 exp  kT ∫−∞
∞

dv x∫−∞
∞

dv y∫vvac
∞

dv z v z exp −m v x
2
v y

2
v z

2


2kT  1−12

The density is simplified as

Replacing the energy with the velocity,
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Emission Density (5)Emission Density (5)
Integral for vx and vy can be performed as

and for vz as 

we obtain

Electric current density J is given by 

∫−∞
+∞

dv x∫−∞
+∞

dv y exp (−m(v x
2+v y

2)

2kT )=2π k T
m

(1−13)

∫vvac

∞

dv z v z exp −mvz
2

2kT = kTm exp −mvvac
2

2kT  1−14

=
4mk 2T 2

h3 exp − kT  1−15

J=
4 e mk 2T 2

h3 exp − kT  1−16
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Richardson-Dushman EquationRichardson-Dushman Equation

J=AT 2 e
−


kT
1−17

A=
4π emk 2

h3 =1.20×106
[A/m2K 2

]

   A : thermionic emission constant

T: Temperature (K)

k : Boltzmann constant ; 1.38E-23 (J/K)

e  : electronic charge

m : electron mass

h : Plank constant ; 6.63E-34 (Js) 
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Field Emission (1)Field Emission (1)
● FE is electron emission 

observed from cold (not hot) 
material when a high electric 
field is applied. 

● Large surface field makes  
the potential barrier very 
thin.

● The tunnel current becomes 
significant with 1E+8 V/m.
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Field Emission (2)Field Emission (2)

J=e∫0

∞

n(ϵz)P (ϵz)d ϵz (1−18)

P z , F =exp [−∫0

w 8m22

h2 {U  z −z}dz ]
=exp [−82m

3heF
E0−z 

3/2 ] 1−19

U  z =E0−eFz

w=
E0− z
eF

Electron 
density

Tunneling
probability

Tunneling Probability by WKB method
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Field Emission (3)
By Taylor expansion, 

In the low temperature limit, the current density is

where ε'=εz-μ. 

E0−z 
3/2=[− z]

3/2
=3/2

3
2
1 /2− z 1−21

J F =
4 em

h3 ∫0

∞

d z − zexp [−8 2m
3heF

E0−z ]
=

4 em

h3
exp −82m

3heF
3/2 ∫0

∞

d   exp [−4 2m
heF

1/2  ] 1−22

J=
e3F 2

8
exp −82m

3heF
3/2 1−23

(Fowler-Nordheim formula)
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Fowler-Nordheim PlotFowler-Nordheim Plot

κ: local field enhancement by surface condition,
Taking ln(J/F2) and plotting as a function of 1/F, 

The gradient gives information on the surface 
condition, κ. 

J=
e32 F 2

8h
exp−

82m
3he F

3/2 1−24

ln J /F 2 =ln  e
32

8h −82m
3he

3/2 1
F

1−25

Fowler-Nordheim formula with field enhancement factor κ

ln
(J

/F
2 )

1/F
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Photo-electron EmissionPhoto-electron Emission
● Electron emission by photo-

electron effect.
● Photons excite electrons into 

higher energy states.
● If the states are higher than 

the vacuum level, the 
electrons goes to vacuum. 

● Condition for photo-emission 
is approximately,  

h 1−26
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Emission Densiy (1)Emission Densiy (1)

Photo-electron current density is given by

where P is transition probability by photon excitation.  For further 
manipulation, replacing y=(εz+hν-E0)/kT and δ=h(ν-ν0)/kT, 

J=
4 emkT

h3 P∫E0−h

∞

d z ln [1exp
−z 

kT ] 1−27

=
4 emk 2T 2

h3
P∫0

∞

dy ln [1exp − y ] 1−29

J=
4 emkT

h3 P∫E0−h

∞

d z ln [1exp
−z 

kT ]
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Emission Density (2)Emission Density (2)

(a)  δ=h(ν-ν0)/kT <0 (ph. energy is less than f):

f (δ)=∫0

∞

dy ln [1+eδ− y ] (1−30)

f =∑
n=1

∞

−1n−1 en

n
∫0

∞

dy e−ny

=∑
n=1

∞

−1n−1 en

n2
1−31

ln 1x=∑
n=1

∞

−1n−1 x
n

n
1−32

ln 1e− y=∑
n=1

∞

−1n−1 en − y 

n
1−33

since
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Emission Density (3)Emission Density (3)
(b) δ=h(ν-ν0)/kT >0 (ph. energy is more than f),  

(b-1) first integral,  w=δ-y
f =∫0



dy∫


∞

dy [ln1e− y] 1−34

∫0



dy ln 1e− y=∫0



dw ln 1ew 

=∫0



dw {wln1e−w}

=[w
2

2 ]
0



∑
n=1

∞

−1n
1

n2 [e
−nw
]0


=
2

2

2

12
∑

n=1

∞

−1n
e−n

n2
1−35
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Emission Density (4)Emission Density (4)
(b-2)  second  integral,  w=y-δ 

the first term of rhs is 0 and the second term is

Finally, sum of (b-1) + (b-2) gives f(δ) 

∫


∞

dy ln 1e− y=∫0

∞

dw ln 1e−w 

=[w ln1e−w ]0
∞

∫0

∞

dw
w

1ew
1−36

∫0

∞

dw
w

1ew
=
2

12
1−37

f =
2

2

2

6
∑

n=1

∞

−1n
e−n

n2
1−38
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Fowler EquationFowler Equation

● Fowler equation gives 
photo-current spectrum. 

● The absolute density is 
hard to estimate because P 
depends on the surface 
condition.  

A=
4 emk 2

h3

J=AT 2P { ∑
n=1

∞

−1n−1 en

n2 0

2

2

2

12
∑

n=1

∞

−1n
e−n

n2 0 } 1−39
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Quantum EfficiencyQuantum Efficiency

Quantum Efficiency, , η  is practically used to qualify the photo-
electron emission

 

 

With practical units,

=
numberof photoelectrons

numberof photons
1−40

 [% ]=124
J [nA]

P [W ] [nm]
1−41
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Polarized electronPolarized electron
● Polarized Electron is generated 

by photo-emission with GaAs 
semiconductor cathode.

● It is essential for polarization 
that GaAs is direct transission 
type semiconductor.

● Transission from the valence 
band (VB) to conduction band 
(CB) by circularily polarized 
photon is spin dependent. 

Introduction Electron Emission Related Physics Electron Gun e- Source for LCs LaserIntroduction Electron Emission Related Physics Electron Gun e- Source for LCs Laser
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ExcitationExcitation

W i f=
2
ℏ
M 2D ℏ f E 

Transition probability ~ Fermi's golden rule

M: Matrix element

D: joint density of states of ħω photon

f: fermi distribution function

Considering only near the band gap, the transition 
probability is proportional to M.
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Matrix Element of GaAsMatrix Element of GaAs
Band gap of GaAs is  point ( k=0).Γ

VB:

J=|3/2,±3/2> (heavy hole) 

J=|3/2, ±1/2>  (light hole).

CB:

J=|1/2,±1/2>

Matrix Element of transition (Clebsh-
Gordon coef.）

Heavy hole:     /2

Light hole:    1/2

√3
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PolarizationPolarization
● Electron excitated by circularly 

polarized photon is 50% polarized 
, 3:1.

● The polarization is enhanced by 
introducing energy selection.
● Untied the degeneration by 

strained or super-lattice 
structure. 

● One of the transition is 
suppressed and the 
polarization can be up to 90%. 
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NEA surface (1)NEA surface (1)

● On NEA surface, the vacuum level is 
less than the lowest state of CB. 

● NEA surface is important for 
polarized electron emission to the 
vacuum, since the polarized electrons 
are at the bottom of CB. 

● NEA surface is made by artificial 
treatment.
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NEA surface (2)NEA surface (2)
● NEA surface is made by evaporation of Cs and O2 on 

conditioned  GaAs. 

● GaAs conditioning: chemical etching by H2S04 and treatment 
by HCl-Isopropanol solution followed by heat cleaning. 

● Alternating deposition of Cs and O2.

● The process should be made
in extremely low vacuum
pressure, <5.0E-9Pa.

0

2

4

6

8
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12

0 0.2 0.4 0.6 0.8 1 1.2 1.4

Q
E
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%
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Polarized Electron (3)Polarized Electron (3)

T. Nishitani,
M. Yamamoto
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NEA  model (1)NEA  model (1)
● There is no established model for 

NEA surface.  There are two main 
candidates. 

● Cs-O electric dipole model

● Composition of Cs-Ox forms 
electric dipole on the surface. 

● The vacuum potential is 
effectively decreased by the 
dipole potential.
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NEA model (2)NEA model (2)
● Hetero-junction model

● III-V semiconductor + CsxO1-x hetero-junction is made at the surface of 
GaAs. 

● Bulk Cs2O is n-type semi-conductor, φ=0.8eV and electron affinity 
=χ 0.55 eV.

● In GaAs and Cs2O hetero-junction, the vacuum level becomes below the 
conduction band in GaAs.

C. A. Sanford, J. Vac. Sci. Tech.
 B7(6), 1989
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Related Physics Process
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Roll of the fieldRoll of the field
●Electrons in cathode is tightly bond by the potential.

●The external field on the cathode surface is important not only to 

lead the beam, but also to extract the beam from the cathode.

●Surface field modifies the work function of cathode. 

(Schottky effect)

●The emittable current density is limited by the coulomb potential 

of the beam and the external field.

(Space charge limitation)
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Schottky Effect (1)Schottky Effect (1)

Force by mirror charge

Fm  z =−
1

4
e2

2z2
2−1

V m  z =−
1

4
∫z

∞ e

4 z ' 2
dz '=−

e2

16 z
2−2

Potential of the mirror charge
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Schottky Effect (2)Schottky Effect (2)
Mirror charge potential and  
external field give

at zmax=
1
4 √ e
πϵE

ϕ(E)=V max−μ=ϕ0−e√ eE4π ϵ
(2−5)

V max=V 0−e eE
4

2−4

V  z =0−
e2

16 z
−e E z 2−3

Maximum

Effective work function  
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Space Charge LimitSpace Charge Limit
● Electron terminates the electric flux (Gauss's law).
● Electric field is weakened by the space charge. 
● When all flux is terminated by the charge, the field at 

the cathode surface is disappeared . 
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Space Charge Limit (2)Space Charge Limit (2)

Poisson equation is

The current density J is given by the 
charge density ρ  and velocity v ,

According energy conservation,  

d 2V  z 

dz2 =−
 z 
0

2−7

1
2
mv  z 2=eV  z  2−9

J=− z  v z  2−8

d 2V  z 

dz2
=
J
0 

m
2 e
V  z −1 /2

2−10

Cathode
(z=0, V=0)

Anode
(z=d, V=VA)

z

Charge density
ρ(z)
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SC Limited Current (2)SC Limited Current (2)

Multiplying 2(dV/dz) and integrating both sides,

Taking square root of both sides and integrate it again,

Extract J

d V  z dz 
2

=
4J
0 

m
2 e
V  z 1/ 2 2−11

4
3
V 3/4=4J

0

4m2e z 2−12

J=
40

9 2e
m
V  z 3/2

z2

=2.33×10−6 V  z 
3/2

z2 2−13
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SC Limited Current (3)SC Limited Current (3)
Substituting the anode conditions, the space charge limited current 
density is obtained as

V(z), E(z) , ρ(z) are expressed as a function of z

J V A , d =2.33×10−6 V A
3/2

d 2
2−14

V (z)=V A( zd )
3/ 4

(2−15)

E (z)=−
dV (z)
dz

=−
4
3

V A

d 4 /3 z
1/3

(2−16)

ρ(z )=−
4 ϵ0

9

V A

d 4/3 z
−2 /3

(2−17)
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Child-Langmuir LawChild-Langmuir Law
If the cathode emission density is more than the space charge limit,  
the current is given by C-L law

  
V and d : voltage and distance between two electrodes.

S : cathode area

P : perveance  defined as;

I=2.33×10−6 S V
3/2

d 2
=PV 3/2(A) (2−18)

P=2.33×10−6 S

d 2 AV
−3/2
 2−19
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DC Gun design (2D SC Limited Flow)DC Gun design (2D SC Limited Flow)
2D case solution for SC limited flow;

z

y

V  z =V A  zd 
4 /3

∇⋅∇ V  z =0
V  z , y=V A

ℜ[ ziy4/3]

d 4/3

=V A z
2 y22 /3 cos

4
3
 2−22

cos
4
3
=0=

3
8


V=0 equi-potential line: 
3
8


By setting an electrode (Wehnelt) 
with this angle, SCL flow is 
produced.   
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DC Gun design : Real geometryDC Gun design : Real geometry

•By setting Wehnelt and 
anode electrodes to 
reproduce the potential, SC 
limited current is extracted 
from the cahode.
•This  is Pierce type gun;

•Conventional type,
•DC bias voltage,
•Thermionic cathode,
•Continous beam.

θ=
3
8
π

Wehnelt electrode Anode electrode

Cathode
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Space Charge Force (1)Space Charge Force (1)
Charged particle beam has repulsion force by its own charge. 
The space charge force causes various beam quality 
degradations, e.g.  bunch lengthening, emittance growth, tune 
shift, etc. The effect is suppressed by acceleration because it 
scaled as 1/γ2.  

Consider a cylindrical beam with a constant density. 

magnetic flux density by the current,

Er=
N e

2 a20

r 2−23

B r =
0

r ∫0

r
r ' J r ' dr ' 2−24

Introduction Electron Emission Related Physics Electron Gun e- Source for LCs Laser



 27 Nov. - 8 Dec., Indore, India
7th Accelerator School for Linear Colliders

56

Space Charge Force (2)Space Charge Force (2)

Current density is

The magnetic flux is given as

The Lorentz force to electron is 

which is scaled as 1/γ2. 

J r =
Ne

 a2
 c 2−25

F=e Ee  cB=
Ne2 r

2 a2
0

1−2
 er

B r =
0N e  c

2 a2
r 2−26

=
Ne2r

2π a2
ϵ0γ

2 e⃗r (2−27)
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Beam EmittanceBeam Emittance

Emittance is defined as area in the phase space where particles 
occupy. The phase space is defined x and x'=dx/ds

In general, RMS emittance is given as

If there is no correlation between x and x', 

ps

px p
x́=

dx
ds
=
v x
v s
=
px
ps
∼
p x
p

(2−28)

ϵx=√〈 x2〉 〈 x́2〉−〈 x x́ 〉2 (2−29)

ϵx=√〈 x2〉 〈 x́2〉 (2−30)
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p2

Normalized emittanceNormalized emittance

In acceleration, transverse momentum px is conserved, but p is 
scaled as

The emittance is inversely scaled. To avoid the energy dependence 
(γβ) on the emittance, the normalized emittance is defined

ps

px p1 ps=γβmc (2−31)

ϵnx=γβϵx

=γβ
R
2 √〈( px

γβmc )
2

〉=
R

2mc
√〈 p x2〉 (2−32)
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What is the matter on Emittance?What is the matter on Emittance?

●Emittance shows the quality of the beam.
●Small emittance beam can be focused down to a small spot size.
●Small emittance beam can be extremely parallel. 
●The shape of the beam depends on the optics, but the emittance is 
invariant in the frame of linear optics.

Linear
Optics
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What is the fundamental limit What is the fundamental limit 
on the emittance?on the emittance?

●Everbody wants small emittance beam, but what is the limit?
●One of the limit is the intrinsic emittance which the emitted beam 
from the cathode already has. 
●The source of the intrinsic emittance of cathode is thermal energy 
and laser energy (photo-cathode case). 
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Emittance of Beam from Emittance of Beam from 
Thermionic Cathode (1) Thermionic Cathode (1) 

Thermionic electron emission density is already obtained 

Total transverse energy of emitted electron is obtained  with a 
similar calculation as

The average transverse energy per electron is

E t=
4πm

h3 ∫μ+ϕ
∞

d ϵz∫0

∞

d ϵt ϵtexp (−
ϵz+ϵt−μ

kT )

N=
4m

h3 k 2T 2 exp − kT  2−33

=
4m

h3 k3T 3 exp − kT  2−34

〈t 〉=
E t

N
=kT 2−35
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Emittance of Beam from Emittance of Beam from 
Thermionic Cathode (2) Thermionic Cathode (2) 

Thermal energy is, 〈ϵx 〉=
kT
2

(2−36)

〈 p x
2
〉

2m
=〈ϵx〉=

kT
2

The transverse emittance is

Substituting the thermal energy                      , emittance is 

εx=√〈 x2〉 〈 x́2〉=
1

γβmc √〈 x
2〉 〈 px

2 〉 (2−37)

εx=
1
γβ√〈 x2〉

kT

mc2=
1
γβ

R
2 √ kTmc2 (2−38)

εnx=γβεx=
R
2 √ kTmc2 (2−39)
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Emittance of Beam from Emittance of Beam from 
Photo-cathode (1)Photo-cathode (1)

Transverse energy from photo-emission is

With T=0 approximation, 

E t=
4 m

h3 ∫−h
∞

d z∫0

∞

d t t [exp zt−kT 1 ]
−1

2−40

E t=
4 m

h3 ∫−h


d z∫0

−z
d tt

=
4m

h3

h−3

6
2−41
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Emittance of Beam from Emittance of Beam from 
Photo-cathode (2)Photo-cathode (2)

Average of the transverse energy is

The momentum is

Emittance is

N=
4m

h3 ∫−h


d  z∫0

−z
d t =

4m

h3

h−2

2
2−42

ϵx , y=
E t

2N
=
h ν−ϕ

6
(2−43)

〈 px
2
〉=2m ϵx , y=m

h ν−ϕ
3

(2−44)

 x=
1
 

R
2 h−3mc2

2−45 nx=
R
2 h−3mc2

2−46
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Emittance of Beam from Emittance of Beam from 
Photo-cathode (3)Photo-cathode (3)

Acounting thermal energy, the transverse energy becomes

The transverse emittance is 

ϵx , y=
E t

2N
=
h ν−ϕ

6
+
kT
2

(2−47)

 x=
1
 

R
2 h−3mc2


kT

mc2
2−48

nx=
R
2 h−3mc2

kT

mc2
2−49
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Emittance measurement 1-1Emittance measurement 1-1

● Energy spread from 
GaAs photo-cathode 
is directly measured 
by blocked electrode. 

● Only electrons above 
the block potential 
barrier, is observed.

● Cathode is placed 
longitudinal B field 
(immerse).

S. Pastuszka,  JAP, 88(11), 6788-6800 (2000)
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Emittance measurement 1-2Emittance measurement 1-2

Adiabatic condition

ratio of transverse energy E⊥ 
and magnetic flux B is  an 
adiabatic constant,

From the energy conservation

The initial transverse energy is 
obtained as

,

S. Pastuszka,  JAP, 88(11), 6788-6800 (2000)



B∣
dB
dz∣1 2−50

E⊥
B
=const 2−51

E⋳ f=E⋳i1− B f

Bi E⊥ i 2−52

〈E⊥ i 〉=−
d 〈E⋳ f 〉
d 

2−53

E║i = 25 meV is confirmed.
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Emittance measurement 2-1 Emittance measurement 2-1 

● Beam emittance from SL 
GaAs photocathode is 
measured by pepper-pot 
method.

● The beam image passing 
small holes (pepper-pot) 
are observed. 

● The phase-space 
distribution is 
reconstructed from the 
image. 

N. Yamamoto, JAP(102) 024904(2007)
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Emittance measurement 2-2 Emittance measurement 2-2 ● Emittance is measure as a 
function of laser wave length. 

● Comparing Super-lattice 
GaAs and bulk GaAs, SL has 
smaller emittance, especially 
for shorter wave length. 

● It can be considered due to 
confinement of the excited 
electrons in the conduction 
mini-band. 

● εx~0.16 mm.mrad is 
confirmed. 

N. Yamamoto, JAP(102) 024904(2007)
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Bunch Compression (1)Bunch Compression (1)
● In any RF accelerators,  the beam should be  concentrated  in a 

short period of longitudinal space for small energy spread;

● E=E0cos(ωt-ks), kδs«1 for efficient acceleration.

● Bunch compressor(buncher) shorten the bunch length down to 
an adequate size for acceleration. 
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Bunch Compression (2)Bunch Compression (2)
● There are two ways for bunch compression:

● Velocity Bunching 
● Magnetic Bunching

● Velocity bunching is effective only for low energy;
● Some particle source can generate only long bunch or continuous 

beam. 
● It should be bunched for RF acceleration.

● Magnetic bunching is effective for all energy region. 
● It is employed sometimes to get extremely short buhc after 

acceleration.
● It is also used to compensate the bunch lengthning in DR for Linear 

colliders.
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Velocity Bunching (1)Velocity Bunching (1)
● Bunch compression is performed by velocity modulation within 

a bunch;
● Bunch head is decelerated.

● Bunch tail is accelerated.

● Velocity is modulated by energy modulation according to 

● Velocity is saturated to c at γ>>1. Then, it works only for low 
energy particle (β<1).

c=c1−
1


2 2−54
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Velocity Bunching (2)Velocity Bunching (2)

Energy modulation by RF cavity,

In linear approximation,  

dE=−eV 0

d sin (ω t )
dt

dt (2−55)

dE
E0

∼
−eV 0

E0

ω dt (2−56)
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►In drift space L, Time delay (dτ) 
with the energy modulation (dE) is

►If dτ equals to -dt,  all particles are 
gathered at the bunch center, 
bunched.
►Because all electrons concentrate 
at t=0 position, RF phase of 
bunching determines the bunch 
longitudinal position. 

Velocity Bunching (3)Velocity Bunching (3)
=

L
c 

2−57

d τ=−
L

c γ2β3

dE
E

∼−
L

c γ2
β

3

eV 0ω

E
dt (2−58)

dt
dτ
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Magnetic Bunching (1)Magnetic Bunching (1)
● Bunch compression is performed by energy modulation with 

dispersive path length difference. 

● Chicane, Wiggler, Arc, etc. 
● A path length difference by a dispersive section,   z  is

                                                                                                    
                      

● It works well for any energy particle.

 z= l
 P
P

2−59

 l=∫L
ds



2−60
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● Energy Modulation  : RF cavity.

● Dispersive section : different path for different energy. 

● Bunch head (tail) travels longer (shorter) path and bunch 
length becomes shorter. 

By E.S. Kim

Magnetic Bunching  (2)Magnetic Bunching  (2)
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Common formalism (1)Common formalism (1)

A
cceler ation

D
eceler ation

Drift

δ(ΔE/E)

z

● Bunching can be formalized with 
transfer matrix in linear 
approximation. 

● Energy modulation is made by 
RF (acc- and deceleration).

● Drift space (velocity bunching) 
or drift through a dispersive 
section (magnetic bunching) 
rotates the beam in phase space.

● The bunch rotates 90 deg.
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Common formalism (2)Common formalism (2)

[ z s s]=[1 R56

0 1 ][ z 0 0] 2−60

[ z s s]=[1 R56

0 1 ][ z 0 0] 2−62

[ z s s]=[ 1 0
R65 1 ][ z 0 0] 2−64

R56=−
L

22
2−61

R56=ηl=∫ds
η
ρ (2−63)

R-matrices

Drift space:

Dispersive section:

RF Energy modulation

R65=
1
z
Δ E
E
∼±

eV 0

E
ω
βc

(2−65)
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Common formalism (3)Common formalism (3)

δ(ΔE/E)

z

Total Transfer Matrix of BC section.
 

                                                              
                                                              
                              

Bunching condition : 1+R56R65=0
Velocity bunching:

Magnetic bunching:

[ z s2

 s2]=[
1 R56

0 1 ][ 1 0
R65 1 ][ z s0

 s0]

R65

R56

=[1R56 R65 R56

R65 1 ][ z  s0

 s0] 2−66

1R56 R65=1−
L


2


2

eV 0

E


 c
=0 2−67

1R56 R65=1 l
eV 0

E


 c
=0 2−68
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Common formalism (4)Common formalism (4)

[ z s2

 s2]=[
0 R56

R65 1 ][z  s0

 s0] 2−68

δ(ΔE/E)

zR65

R56

•When the bunching condition is 
satisfied, 

 
•The position z(s2) does not depends 
on z(s0). 
•This is a good mechanism to stabilize 
the bunch position. 
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Common formalism (5)Common formalism (5)

[R560

0
]=[ 0 R56

R65 1 ][ 00
] 2−70

z2=R560 2−69

δ(ΔE/E)

z

R56

δ0

Final bunch length after an optimized BC section (1+R56R65=0) is 
determined by the initial energy spread;

It can be understood by considering 
the transport of a reference point.

 

The actual bunch length is also limited 
by non-linearity in optics. 
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Energy Compression Energy Compression 
Energy compression is a reverse process of the bunch compression.  
Bean transfere by dispersive section (R56) and energy modulation (R65) 
is  

 

 

 Matching condition for energy 
compression is

The final energy spread is

δ(ΔE/E)

zR65

R56

[z(s2)

δ(s2)]=[
1 0
R65 1][1 R56

0 1 ][z (s0)

δ(s0)]
=[ 1 R56

R65 1+R56R65
][ z(s0)

δ(s0)] (2−71)

1+R56 R65=0 (2−72)

δ(s2)=z (s0)R65 (2−73)
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