Parameter Optimisation

D. Schulte

Linear Collider School, November 2012

Overview

- Parameter optimisation requires to remember the previous lectures
- We will go through the relevant steps again

Work Flow as seen by RF Expert (Alexej Grudiev)

D. Schulte, 7th Linear Collider School 2012, Main Linac A3 2

Luminosity

Simplified treatment and approximations used throughout

$\mathcal{L}=H_{D} \frac{N^{2} f_{\text {rep }} n_{b}}{4 \pi \sigma_{x} \sigma_{y}}$
$\mathcal{L} \propto H_{D} \frac{N}{\sqrt{\beta_{x} \epsilon_{x}} \sqrt{\beta_{y} \epsilon_{y}}} \eta P$
$\epsilon_{x}=\epsilon_{x, D R}+\epsilon_{x, B C}+\epsilon_{x, B D S}+\ldots$
$\epsilon_{y}=\epsilon_{y, D R}+\epsilon_{y, B C}+\epsilon_{y, \text { linac }}+\epsilon_{y, B D S}$
$+\epsilon_{y, \text { growth }}+\epsilon_{y, \text { offset }} \ldots$

$$
\begin{aligned}
& \sigma_{x, y} \propto \sqrt{\beta_{x, y} \epsilon_{x, y} / \gamma} \\
& N f_{r e p} n_{b} \propto \eta P \\
& \text { typically } \epsilon_{x} \gg \epsilon_{y}, \\
& \beta_{x} \gg \beta_{y}
\end{aligned}
$$

Fundamental limitations from

- beam-beam: $N / \sqrt{\beta_{x} \epsilon_{x}}, N / \sqrt{\beta_{x} \epsilon_{x} \beta_{y} \epsilon_{y}}$
- emittance generation and preservation: $\sqrt{\beta_{x} \epsilon_{x}}, \sqrt{\beta_{y} \epsilon_{y}}$
- main linac RF: η

Potential Limitations

- Efficiency η :
depends on beam current that can be transported
Decrease bunch distance \Rightarrow long-range transverse wakefields in main linac Increase bunch charge \Rightarrow short-range transverse and longitudinal wakefields in main linac, other effects
- Horizontal beam size σ_{x}
beam-beam effects, final focus system, damping ring, bunch compressors
- vertical beam size σ_{y}
damping ring, main linac, beam delivery system, bunch compressor, need to collide beams, beam-beam effects
- Will try to show how to derive $L_{b x}\left(f, a, \sigma_{a}, G\right)$

Beam Size Limit at IP

- The vertical beam size had been $\sigma_{y}=1 \mathrm{~nm}$ (BDS)
\Rightarrow challenging enough, so keep it $\Rightarrow \epsilon_{y}=10 \mathrm{~nm}$
- Fundamental limit on horizontal beam size arises from beamstrahlung

Two regimes exist depending on beamstrahlung parameter

$$
\Upsilon=\frac{2 \hbar \omega_{c}}{3} \propto \frac{N \gamma}{E_{0}} \frac{\left.N \sigma_{x}+\sigma_{y}\right) \sigma_{z}}{}
$$

$\Upsilon \ll 1$: classical regime, $\Upsilon \gg 1$: quantum regime

At high energy and high luminosity $\Upsilon \gg 1$

$$
\mathcal{L} \propto \Upsilon \sigma_{z} / \gamma P \eta
$$

\Rightarrow partial suppression of beamstrahlung
\Rightarrow coherent pair production
In CLIC $\langle\Upsilon\rangle \approx 6, N_{\text {coh }} \approx 0.1 N$
\Rightarrow somewhat in quantum regime

Luminosity Optimisation at IP

Total luminosity for $\Upsilon \gg 1$

$$
\mathcal{L} \propto \frac{N}{\sigma_{x}} \frac{\eta}{\sigma_{y}} \propto \frac{n_{\gamma}^{3 / 2}}{\sqrt{\sigma_{z}}} \frac{\eta}{\sigma_{y}}
$$

large $n_{\gamma} \Rightarrow$ higher $\mathcal{L} \Rightarrow$ degraded spectrum

chose n_{γ}, e.g. maximum $L_{0.01}$ or $L_{0.01} / L=$ 0.4 or ...

$$
\mathcal{L}_{0.01} \propto \frac{\eta}{\sqrt{\sigma_{z}} \sigma_{y}}
$$

Other Beam Size Limitations

- Final focus system squeezes beams to small sizes with main problems:
- beam has energy spread (RMS of $\approx 0.35 \%) \Rightarrow$ avoid chromaticity
- synchrotron radiation in bends \Rightarrow use weak bends \Rightarrow long system
- radiation in final doublet (Oide Effect)
- Large $\beta_{x, y} \Rightarrow$ large nominal beam size
- Small $\beta_{x, y} \Rightarrow$ large distortions
- Beam-beam simulation of nominal case: effective $\sigma_{x} \approx 40 \mathrm{~nm}, \sigma_{y} \approx 1 \mathrm{~nm}$
\Rightarrow lower limit of $\sigma_{x} \Rightarrow$ for small N optimum n_{γ} cannot be reached
- new FFS reaches $\sigma_{x} \approx 40 \mathrm{~nm}, \sigma_{y} \approx 1 \mathrm{~nm}$
- Assume that the transverse emittances remain the same
- not strictly true
- emittance depends on charge in damping ring (e.g $\epsilon_{x}\left(N=2 \times 10^{9}\right)=450 \mathrm{~nm}$, $\left.\epsilon_{x}\left(N=4 \times 10^{9}\right)=550 \mathrm{~nm}\right)$

Beam Dynamics Work Flow

- The parameter optimisation has been performed keeping the main linac beam dynamics tolerances at the same level as for the original 30 GHz design
- The minimum spot size at the IP is dominated by BDS and damping ring
- adjusted N / σ_{x} for large bunch charges to respect beam-beam limit
- For each of the different frequencies and values of a / λ a scan in bunch charge N has been performed
- the bunch length has been determined by requiring the final RMS energy spread to be $\sigma_{E} / E=0.35 \%$ and running 12° off-crest
- the transverse wake-kick at $2 \sigma_{z}$ has been determined
- the bunch charge which gave the same kick as the old parameters has been chosen
- The wakefields have been calculated using some formulae from K. Bane
- used them partly outside range of validity
\Rightarrow but still a good approximation, confirmed by RF experts
$\Rightarrow N$ and $L_{b x}\left(f, a, \sigma_{a}, G\right)$ given to RF experts

Beam Loading and Bunch Length

- Aim for shortest possible bunch (wakefields)
- Energy spread into the beam delivery system should be limited to about 1% full width or 0.35% RMS
- Multi-bunch beam loading compensated by RF
- Single bunch longitudinal wakefield needs to be compensated
\Rightarrow accelerate off-crest

- Limit around average $\Delta \Phi \leq 12^{\circ}$
$\Rightarrow \sigma_{z}=44 \mu \mathrm{~m}$ for $N=3.72 \times 10$

Specific Wakefields

- Longitudinal wakefields contain more than the fundamental mode
- We will use wakefields based on fits derived by Karl Bane
l length of the cell
a radius of the iris aperture g length between irises

$$
\begin{aligned}
& s_{0}=0.41 a^{1.8} g^{1.6}\left(\frac{1}{l}\right)^{2.4} \\
& W_{L}=\frac{Z_{0} c}{\pi a^{2}} \exp \left(-\sqrt{\frac{s}{s_{0}}}\right)
\end{aligned}
$$

- Use CLIC structure parameters

- Summation of an infinite number of cosine-like modes
- calculation in time domain or approximations for high frequency modes

$\underline{\text { Recipe for Choosing the Bunch Parameters }}$

- Decide on the average RF phase
- OK, we fix 12°
- Decide on an acceptable energy spread at the end of the linac
- OK, we chose 0.35\%
- Determine $\sigma_{z}(N)$
- chose a bunch charge
- vary the bunch length until the final energy spread is acceptable
- chose next charge
- Determine which bunch charge (and corresponding bunch length) can be transported stably

CLIC Lattice Design

- Used $\beta \propto \sqrt{E}, \Delta \Phi=$ const
- balances wakes and dispersion
- roughly constant fill factor
- phase advance is chosen to balance between wakefield and ground motion effects
- Preliminary lattice
- made for $N=3.7 \times 10^{9}$
- quadrupole dimensions need to be confirmed
- some optimisations remain to be done
- Total length 20867.6 m
- fill factor 78.6\%

- 12 different sectors used
- Matching between sectors using 7 quadrupoles to allow for some energy bandwidth

CLIC Fill Factor

- Want to achieve a constant fill factor
- to use all drive beams efficiently
- Scaling $f=f_{0} \sqrt{E / E_{0}}$ yields

$$
L_{q} \propto \frac{E}{\sqrt{\frac{E}{E_{0}}}} \propto \sqrt{E}
$$

using a quadrupole spacing of $L=L_{0} \sqrt{E / E_{0}}$ leads to

$$
\frac{L_{q}}{L} \propto \frac{\sqrt{E}}{\sqrt{E}} \propto \mathrm{const}
$$

\Rightarrow The choice allows to maintain a roughly constant fill factor
\Rightarrow It maximises the focal strength along the machine

Magnet Considerations

- The maximum strength of a focusing magnet is limited
- for a normal conducting design rule of thumb is 1 T at the poletip
\Rightarrow Required integrated magnet strength is

$$
\frac{\mathrm{T}}{\mathrm{~m}} \frac{E}{0.3 \mathrm{GeV}} \frac{\mathrm{~m}}{f}
$$

- For CLIC poletip radius is given by practical considerations of magnet design $a \approx$ 5 mm yielding a gradient of $200 \mathrm{~T} / \mathrm{m}$
- We chose about 10% of the machine to be quadrupoles
\Rightarrow fill factor is $\approx 80 \%$
- 10% are lost for flanges (mainly on structures)
- Use $L_{0}=1.5 \mathrm{~m}$ and $f_{0}=1.3 \mathrm{~m}$ yields

$$
\begin{gathered}
\eta_{q}=\frac{E_{0}}{0.3 \mathrm{GeV}} \frac{\mathrm{~T} / \mathrm{m}}{200 \mathrm{~T} / \mathrm{m}^{2}} \frac{\mathrm{~m}}{f_{0}} \frac{1}{L_{0}} \\
\Rightarrow \eta_{q} \approx 7.7 \%
\end{gathered}
$$

- We use discrete lengths hence we loose a bit more

Example of a Transverse Wakefield (CLIC)

Fit obtained by K. Bane For short distances the wakefield rises linear
Summation of an infinite number of sine-like modes with different frequencies

$$
\begin{gathered}
s_{0}=0.169 a^{1.79} g^{0.38}\left(\frac{1}{l}\right)^{1.17} \\
w_{\perp}(z)=4 \frac{Z_{0} c s_{0}}{\pi a^{4}}\left[1-\left(1+\sqrt{\frac{z}{s_{0}}}\right) \exp \left(-\sqrt{\frac{z}{s_{0}}}\right)\right] \\
w_{\perp}(z) \approx 4 \frac{Z_{0} c s_{0}}{\pi a^{4}}\left[1-\left(1+\sqrt{\frac{z}{s_{0}}}\right)\left(1-\sqrt{\frac{z}{s_{0}}}\right)\right]=4 \frac{Z_{0} c s_{0}}{\pi a^{4}}\left[1-\left(1-\frac{z}{s_{0}}\right)\right]=4 \frac{Z_{0} c z}{\pi a^{4}}
\end{gathered}
$$

Energy Spread and Beam Stability

- Trade-off in fixed lattice
- large energy spread is more stable
- small energy spread is better for alignment
\Rightarrow Beam with $N=3.7 \times 10^{9}$ can be stable

\Rightarrow Tolerances are not unique number

Remember: Multi-Bunch Wakefields

- Long-range transverse wakefields have the form

$$
\begin{gathered}
W_{\perp}(z)= \\
\sum_{i}^{\infty} 2 k_{i} \sin \left(2 \pi \frac{z}{\lambda_{i}}\right) \exp \left(-\frac{\pi z}{\lambda_{i} Q_{i}}\right)
\end{gathered}
$$

- In practice need to consider only a limited number of modes
- There impact can be reduced by detuning and damping

Multi-Bunch Jitter

- If bunches are not pointlike the results change
- an energy spread leads to a more stable case
- Simulations show
- point-like bunches
- bunches with energy spread due to bunch length
- including also initial en-
 ergy spread
\Rightarrow Point-like bunches is a pessimistic assumption for the dynamic effects

Final Emittance Growth (CLIC)

imperfection	with respect to	symbol	value	emitt. growth
BPM offset	wire reference	$\sigma_{B P M}$	$14 \mu \mathrm{~m}$	0.367 nm
BPM resolution		$\sigma_{\text {res }}$	$0.1 \mu \mathrm{~m}$	0.04 nm
accelerating structure offset	girder axis	σ_{4}	$10 \mu \mathrm{~m}$	0.03 nm
accelerating structure tilt	girder axis	σ_{t}	200μ radian	0.38 nm
articulation point offset	wire reference	σ_{5}	$12 \mu \mathrm{~m}$	0.1 nm
girder end point	articulation point	σ_{6}	$5 \mu \mathrm{~m}$	0.02 nm
wake monitor	structure centre	σ_{7}	$5 \mu \mathrm{~m}$	0.54 nm
quadrupole roll	longitudinal axis	σ_{r}	100μ radian	$\approx 0.12 \mathrm{~nm}$

- Selected a good DFS implementation
- trade-offs are possible
- Multi-bunch wakefield misalignments of $10 \mu \mathrm{~m}$ lead to $\Delta \epsilon_{y} \approx 0.13 \mathrm{~nm}$
- Performance of local prealignment is acceptable

Multi-Bunch Static Imperfections

- In CLIC
- we misalign all structures
- perform one-to-one steering with a multibunch beam
- perform one-to-one steering with a single bunch
- compare the emittance growth

CLIC Example of Fast Imperfection Tolerances

- Many sources exist

Source	Luminosity budget	
Damping ring extraction jitter	1%	Tolerance
Magnetic field variations	$? \%$	
Bunch compressor jitter	1%	
Quadrupole jitter in main linac	1%	$\Delta \epsilon_{y}=0.4 \mathrm{~nm}$ $\sigma_{\text {jitter }} \approx 1.8 \mathrm{~nm}$
Structure pos. jitter in main linac	0.1%	$\Delta \epsilon_{y}=0.04 \mathrm{~nm}$ $\sigma_{\text {jitter }} \approx 800 \mathrm{~nm}$
Structure angle jitter in main linac	0.1%	$\Delta \epsilon_{y}=0.04 \mathrm{~nm}$ $\sigma_{j i t t e r} \approx 400 \mathrm{nradian}$
RF jitter in main linac	1%	
Crab cavity phase jitter	1%	$\sigma_{\phi} \approx 0.01$
Final doublet quadrupole jitter	1%	$\sigma_{j i t t e r} \approx 0.1 \mathrm{~nm}$
Other quadrupole jitter in BDS	1%	
\cdots	$? \%$	

RF Constraints

- To limit the breakdown rate and the severeness of the breakdowns
- The maximum surface field has to be limited

$$
\hat{E}<260 \mathrm{MV} / \mathrm{m}
$$

- The temperature rise at the surface needs to be limited

$$
\Delta T<56 \mathrm{~K}
$$

- The power flow needs to be limited
- related to the badness of a breakdown
empirical parameter is

$$
P /(2 \pi a) \tau^{\frac{1}{3}}<18 \frac{\mathrm{MW}}{\mathrm{~mm}} \mathrm{n}^{\frac{1}{3}}
$$

RF Work Flow

- Calculate RF properties of cells with different a / λ
- structures can be constructed by interpolating between these values
- Remove all structures with a too high surface field
- Determine the pulse length supported by the structure
- Estimate long-range wake and chose bunch distance
- bunch charge is given by beam dynamics
- Calculate RF to beam efficiency for the structure

Cost Model

- The machine should be optimised for lowest cost
- power consumption will also limit the choice
- A simplified cost model can den developed
- e.g. cost per unit length of linac
- energy to be stored in drive beam accelerator modulators per pulse
- With this model one can identify the cheapest machine

Work Flow

D. Schulte, 7th Linear Collider School 2012, Main Linac A3 25

Results

D. Schulte, 7th Linear Collider School 2012, Main Linac A3 26

Results 2

D. Schulte, 7th Linear Collider School 2012, Main Linac A3 27

Lattice at Lower Energy

Required Beam Size (CLIC 500GeV)

- Roughly constant luminosity spectrum quality for constant N / σ_{x}
- Required is beam size is between 25 and 40 nm for beam with $N=10^{9}$ particles
- scales with the square of the charge
- For $\beta_{x}=10 \mathrm{~mm}$ and $N=$ 4×10^{9} requires $\epsilon_{x} \approx 1 \mu \mathrm{~m}$

$$
\epsilon_{x, o p t} \approx\left(\frac{N}{4 \times 10^{9}}\right)^{2} \frac{10 \mathrm{~mm}}{\beta_{x}} \mu \mathrm{~m}
$$

Relative Luminosity

- Relevant parameter is

$$
\begin{gathered}
D=\frac{\beta_{x}}{\mathrm{~mm}} \frac{\epsilon_{x}}{\mu \mathrm{~m}}\left(\frac{10^{9}}{N}\right)^{2} \\
\frac{L_{b x}}{N} \propto \frac{1}{\sqrt{D}}
\end{gathered}
$$

- Require this value to be in the range $0.3-0.7$
- $\approx 30 \%$ more luminosity for lower value
- NLC had $N=7.5 \times 10^{9} \beta_{x}=$ 10 mm and $\epsilon_{x}=4 \mu \mathrm{~m}$
- $D=0.7$
\Rightarrow close to optimum

Beam Jitter at Lower Energy

- Two main limitations
- local beam stability
- integrated residual effect along the machine
- To keep the local beam stability constant yields the limitation
- $N w_{\perp}\left(2 \sigma_{z}\right)=$ const
- keeps the beam energy spread constant
- A second limitation arises from the integral effect

$$
\frac{d}{d s} \frac{\Delta y^{\prime} / \sigma_{y}^{\prime}}{y / \sigma_{y}} \propto \frac{N w_{\perp} \sigma_{y}}{E \sigma_{y}^{\prime}}
$$

- Integral using lattice scaling $\beta=\beta_{0} \sqrt{E(s) / E_{0}}$ yields

$$
\frac{\Delta y^{\prime} / \sigma_{y}^{\prime}}{y / \sigma_{y}} \propto \frac{N w_{\perp} \beta_{0}}{G} \sqrt{\frac{E_{f}}{E_{0}}}
$$

- $N w_{\perp}\left(2 \sigma_{z}\right)=$ const is stronger limitation as long as
- $G \geq \sqrt{E_{f} / E_{f, 0}} G_{0}$
- For $500 \mathrm{GeV} G \geq 41 \mathrm{MV} / \mathrm{m}$

Emittance Growth at Lower Energy

- Express structure induced emittance growth as function of energy and gradient

$$
\frac{d}{d s} \frac{\Delta \epsilon(s)}{\epsilon} \propto\left(\frac{N w_{\perp}\left(2 \sigma_{z}\right) \Delta y L_{c a v}}{E(s)} \frac{1}{\sigma_{y}^{\prime}(s)}\right)^{2} \frac{1}{L_{c a v}}
$$

using the lattice scaling $\beta=\beta_{0} \sqrt{E(s) / E_{0}}$ one finds

$$
\Delta \epsilon_{c a v} \propto \frac{N^{2} w_{\perp}^{2}\left(2 \sigma_{z}\right) \Delta y^{2} \beta_{0} L_{\text {tot }, c a v}}{G} \sqrt{\frac{E_{f}}{E_{0}}}
$$

\Rightarrow Could increase $N w_{\perp}\left(2 \sigma_{z}\right)$ by factor 2.4 at 500 GeV

- for constant gradient
- For constant $N w_{\perp}$ and $L_{c a v}$ we find $G \geq 41 \mathrm{MV} / \mathrm{m}$
- For constant $N w_{\perp}$ and doubled $L_{\text {cav }}$ we find $G \geq 82 \mathrm{MV} / \mathrm{m}$
- but for $G=50 \mathrm{MV} / \mathrm{m}$ still only 1.6 times as high as at 3 TeV
- Dispersive emittance growth scales as

$$
\Delta \epsilon_{t o t, d i s p} \propto \frac{\Delta E^{2} \Delta y^{2}}{G} \sqrt{\frac{E_{f}}{E_{0}}}
$$

\Rightarrow independent of structure length

- Total emittance growth should not increase much, first simulations confirm this
D. Schulte, 7th Linear Collider School 2012, Main Linac A3 32

Aperture and Bunch Charge

- Procedure is similar to the one for 3 TeV
- $\sigma_{y}(N)$ from single bunch longitudinal wake
- N, σ_{z} from transverse single bunch wake
- Keep local beam stability constant
- leads to less bunch charge than for 3 TeV
- but longer bunches

Luminosity

Assume the following

- case A
- emittance from 3 TeV
- beta-functions of $\beta_{x}=10 \mathrm{~mm}$ and $\beta_{y}=0.1 \mathrm{~mm}$ at the interaction point
- case B
- horizontal emittance from $\epsilon_{x}=3 \mu \mathrm{~m}$ at the damping ring to $\epsilon_{x}=$ $4 \mu \mathrm{~m}$ at the interaction point
- vertical emittance from $\epsilon_{y}=10 \mathrm{~nm}$ at the damping ring to $\epsilon_{y}=40 \mathrm{~nm}$ at the interaction point
- beta-functions of $\beta_{x}=8 \mathrm{~mm}$ and $\beta_{y}=0.1 \mathrm{~mm}$ at the interaction point

Summary

- You had a glimpse on the most important main linac topics
- To really understand experiments are nice
- a cheap way is to use a simulation code
- and play with it

Thanks

Many thanks to you for listening (I hope) and to those who helped prearing lecture

