Parameter Optimisation

D. Schulte

Linear Collider School, November 2012

<u>Overview</u>

- Parameter optimisation requires to remember the previous lectures
- We will go through the relevant steps again

Work Flow as seen by RF Expert (Alexej Grudiev)

Luminosity

Simplified treatment and approximations used throughout

$$\mathcal{L} = H_D \frac{N^2 f_{rep} n_b}{4\pi \sigma_x \sigma_y}$$
$$\mathcal{L} \propto H_D \frac{N}{\sqrt{\beta_x \epsilon_x} \sqrt{\beta_y \epsilon_y}} \eta P$$
$$\epsilon_x = \epsilon_{x,DR} + \epsilon_{x,BC} + \epsilon_{x,BDS} + \dots$$
$$\epsilon_y = \epsilon_{y,DR} + \epsilon_{y,BC} + \epsilon_{y,linac} + \epsilon_{y,BDS}$$
$$+ \epsilon_{y,growth} + \epsilon_{y,offset} \dots$$

$$\sigma_{x,y} \propto \sqrt{\beta_{x,y} \epsilon_{x,y}/\gamma}$$

 $N f_{rep} n_b \propto \eta P$

typically $\epsilon_x \gg \epsilon_y$, $\beta_x \gg \beta_y$

Fundamental limitations from

- beam-beam: $N/\sqrt{\beta_x\epsilon_x}$, $N/\sqrt{\beta_x\epsilon_x\beta_y\epsilon_y}$
- emittance generation and preservation: $\sqrt{\beta_x \epsilon_x}, \sqrt{\beta_y \epsilon_y}$
- \bullet main linac RF: η

Potential Limitations

• Efficiency η :

depends on beam current that can be transported Decrease bunch distance \Rightarrow long-range transverse wakefields in main linac Increase bunch charge \Rightarrow short-range transverse and longitudinal wakefields in main linac, other effects

- Horizontal beam size σ_x beam-beam effects, final focus system, damping ring, bunch compressors
- vertical beam size σ_y

damping ring, main linac, beam delivery system, bunch compressor, need to collide beams, beam-beam effects

• Will try to show how to derive $L_{bx}(f, a, \sigma_a, G)$

Beam Size Limit at IP

• The vertical beam size had been $\sigma_y = 1 \text{ nm}$ (BDS)

 \Rightarrow challenging enough, so keep it $\Rightarrow \epsilon_y = 10 \text{ nm}$

 Fundamental limit on horizontal beam size arises from beamstrahlung Two regimes exist depending on beamstrahlung parameter

$$\Upsilon = \frac{2}{3} \frac{\hbar \omega_c}{E_0} \propto \frac{N\gamma}{(\sigma_x + \sigma_y)\sigma_z}$$

 $\Upsilon \ll 1$: classical regime, $\Upsilon \gg 1$: quantum regime

At high energy and high luminosity $\Upsilon\gg 1$

 $\mathcal{L} \propto \Upsilon \sigma_z / \gamma P \eta$

- \Rightarrow partial suppression of beamstrahlung
- \Rightarrow coherent pair production

In CLIC $\langle \Upsilon \rangle \approx 6$, $N_{coh} \approx 0.1N$

 \Rightarrow somewhat in quantum regime

 \Rightarrow Use luminosity in peak as figure of merit

Luminosity Optimisation at IP

Other Beam Size Limitations

- Final focus system squeezes beams to small sizes with main problems:
 - beam has energy spread (RMS of $\approx 0.35\%$) \Rightarrow avoid chromaticity
 - synchrotron radiation in bends \Rightarrow use weak bends \Rightarrow long system
 - radiation in final doublet (Oide Effect)
- Large $\beta_{x,y} \Rightarrow$ large nominal beam size
- Small $\beta_{x,y} \Rightarrow$ large distortions
- Beam-beam simulation of nominal case: effective $\sigma_x \approx 40 \text{ nm}$, $\sigma_y \approx 1 \text{ nm}$
- \Rightarrow lower limit of $\sigma_x \Rightarrow$ for small N optimum n_γ cannot be reached
 - new FFS reaches $\sigma_x \approx 40 \,\mathrm{nm}$, $\sigma_y \approx 1 \,\mathrm{nm}$
 - Assume that the transverse emittances remain the same
 - not strictly true
 - emittance depends on charge in damping ring (e.g $\epsilon_x (N = 2 \times 10^9) = 450 \text{ nm}$, $\epsilon_x (N = 4 \times 10^9) = 550 \text{ nm}$)

Beam Dynamics Work Flow

- \bullet The parameter optimisation has been performed keeping the main linac beam dynamics tolerances at the same level as for the original 30 $\rm GHz$ design
- The minimum spot size at the IP is dominated by BDS and damping ring
 - adjusted N/σ_x for large bunch charges to respect beam-beam limit
- \bullet For each of the different frequencies and values of a/λ a scan in bunch charge N has been performed
 - the bunch length has been determined by requiring the final RMS energy spread to be $\sigma_E/E = 0.35\%$ and running 12° off-crest
 - the transverse wake-kick at $2\sigma_z$ has been determined
 - the bunch charge which gave the same kick as the old parameters has been chosen
- The wakefields have been calculated using some formulae from K. Bane
 - used them partly outside range of validity
 - \Rightarrow but still a good approximation, confirmed by RF experts
- $\Rightarrow N \text{ and } L_{bx}(f, a, \sigma_a, G) \text{ given to RF experts}$

Beam Loading and Bunch Length

- Aim for shortest possible bunch (wakefields)
- Energy spread into the beam delivery system should be limited to about 1% full width or 0.35% RMS
- Multi-bunch beam loading compensated by RF
- Single bunch longitudinal wakefield needs to be compensated
 - $\Rightarrow \text{accelerate off-crest}$

• Limit around average $\Delta \Phi \leq 12^{\circ}$

 $\Rightarrow \sigma_z = 44 \, \mu \mathrm{m}$ for $N = 3.72 \times 10$

Specific Wakefields

- Longitudinal wakefields contain more than the fundamental mode
- We will use wakefields based on fits derived by Karl Bane
 - l length of the cell
 - \boldsymbol{a} radius of the iris aperture
 - g length between irises

$$s_0 = 0.41a^{1.8}g^{1.6} \left(\frac{1}{l}\right)^{2.4}$$
$$W_L = \frac{Z_0 c}{\pi a^2} \exp\left(-\sqrt{\frac{s}{s_0}}\right)$$

• Use CLIC structure parameters

- Summation of an infinite number of cosine-like modes
 - calculation in time domain or approximations for high frequency modes

Recipe for Choosing the Bunch Parameters

- Decide on the average RF phase
 - OK, we fix 12°
- Decide on an acceptable energy spread at the end of the linac
 - OK, we chose 0.35%
- Determine $\sigma_z(N)$
 - chose a bunch charge
 - vary the bunch length until the final energy spread is acceptable
 - chose next charge
- Determine which bunch charge (and corresponding bunch length) can be transported stably

CLIC Lattice Design

- Used $\beta \propto \sqrt{E}$, $\Delta \Phi = \mathrm{const}$
 - balances wakes and dispersion
 - roughly constant fill factor
 - phase advance is chosen to balance between wakefield and ground motion effects
- Preliminary lattice
 - made for $N=3.7\times 10^9$
 - quadrupole dimensions need to be confirmed
 - some optimisations remain to be done
- Total length 20867.6m
 - fill factor 78.6%

- 12 different sectors used
- Matching between sectors using 7 quadrupoles to allow for some energy bandwidth

CLIC Fill Factor

- Want to achieve a constant fill factor
 - to use all drive beams efficiently
- Scaling $f = f_0 \sqrt{E/E_0}$ yields

$$L_q \propto \frac{E}{\sqrt{\frac{E}{E_0}}} \propto \sqrt{E}$$

using a quadrupole spacing of $L = L_0 \sqrt{E/E_0}$ leads to

$$\frac{L_q}{L} \propto \frac{\sqrt{E}}{\sqrt{E}} \propto \text{const}$$

- \Rightarrow The choice allows to maintain a roughly constant fill factor
- \Rightarrow It maximises the focal strength along the machine

Magnet Considerations

- The maximum strength of a focusing magnet is limited
 - for a normal conducting design rule of thumb is $1\,\mathrm{T}$ at the poletip
- \Rightarrow Required integrated magnet strength is

$$\frac{\Gamma}{m} \frac{E}{0.3 \,\text{GeV}} \frac{m}{f}$$

- For CLIC poletip radius is given by practical considerations of magnet design $a \approx 5 \text{ mm}$ yielding a gradient of 200 T/m
- \bullet We chose about 10% of the machine to be quadrupoles

 \Rightarrow fill factor is $\approx 80\%$

- 10% are lost for flanges (mainly on structures)
- Use $L_0 = 1.5 \,\mathrm{m}$ and $f_0 = 1.3 \,\mathrm{m}$ yields

$$\eta_q = \frac{E_0}{0.3 \,\text{GeV}} \frac{\text{T/m}}{200 \,\text{T/m}^2} \frac{\text{m}}{f_0} \frac{1}{L_0}$$
$$\Rightarrow \eta_q \approx 7.7\%$$

• We use discrete lengths hence we loose a bit more

Example of a Transverse Wakefield (CLIC)

$$s_{0} = 0.169a^{1.79}g^{0.38}\left(\frac{1}{l}\right)^{1.17}$$
$$w_{\perp}(z) = 4\frac{Z_{0}cs_{0}}{\pi a^{4}}\left[1 - \left(1 + \sqrt{\frac{z}{s_{0}}}\right)\exp\left(-\sqrt{\frac{z}{s_{0}}}\right)\right]$$
$$w_{\perp}(z) \approx 4\frac{Z_{0}cs_{0}}{\pi a^{4}}\left[1 - \left(1 + \sqrt{\frac{z}{s_{0}}}\right)\left(1 - \sqrt{\frac{z}{s_{0}}}\right)\right] = 4\frac{Z_{0}cs_{0}}{\pi a^{4}}\left[1 - \left(1 - \frac{z}{s_{0}}\right)\right] = 4\frac{Z_{0}cz}{\pi a^{4}}$$

Energy Spread and Beam Stability

- Trade-off in fixed lattice
 - large energy spread is more stable
 - small energy spread is better for alignment
- \Rightarrow Beam with $N = 3.7 \times 10^9$ can be stable

Remember: Multi-Bunch Wakefields

• Long-range transverse wakefields have the form

 $W_{\perp}(z) = \sum_{i=1}^{\infty} 2k_{i} \sin\left(2\pi \frac{z}{\lambda_{i}}\right) \exp\left(-\frac{\pi z}{\lambda_{i} Q_{i}}\right)$

- In practice need to consider only a limited number of modes
- There impact can be reduced by detuning and damping

Multi-Bunch Jitter

- If bunches are not pointlike the results change
 - an energy spread leads to a more stable case
- Simulations show
 - point-like bunches
 - bunches with energy spread due to bunch length
 - including also initial energy spread
- \Rightarrow Point-like bunches is a pessimistic assumption for the dynamic effects

Final Emittance Growth (CLIC)

imperfection	with respect to	symbol	value	emitt. growth
BPM offset	wire reference	σ_{BPM}	$14\mu{ m m}$	$0.367\mathrm{nm}$
BPM resolution		σ_{res}	0.1 $ m \mu m$	$0.04\mathrm{nm}$
accelerating structure offset	girder axis	σ_4	10 $\mu{ m m}$	$0.03\mathrm{nm}$
accelerating structure tilt	girder axis	σ_t	200 μ radian	$0.38\mathrm{nm}$
articulation point offset	wire reference	σ_5	12 $\mu { m m}$	$0.1\mathrm{nm}$
girder end point	articulation point	σ_6	$5\mu{ m m}$	$0.02\mathrm{nm}$
wake monitor	structure centre	σ_7	$5\mu{ m m}$	$0.54\mathrm{nm}$
quadrupole roll	longitudinal axis	σ_r	100 μ radian	$\approx 0.12\mathrm{nm}$

- Selected a good DFS implementation
 - trade-offs are possible
- Multi-bunch wakefield misalignments of $10 \,\mu m$ lead to $\Delta \epsilon_y \approx 0.13 \, nm$
- Performance of local prealignment is acceptable

Multi-Bunch Static Imperfections

- In CLIC
 - we misalign all structures
 - perform one-to-one steering with a multibunch beam
 - perform one-to-one steering with a single bunch
 - compare the emittance growth

CLIC Example of Fast Imperfection Tolerances

• Many sources exist

Source	Luminosity budget	Tolerance
Damping ring extraction jitter	1%	
Magnetic field variations	?%	
Bunch compressor jitter	1%	
Quadrupole jitter in main linac	1%	$\Delta \epsilon_y = 0.4 \mathrm{nm}$ $\sigma_{jitter} \approx 1.8 \mathrm{nm}$
Structure pos. jitter in main linac	0.1%	$\Delta \epsilon_y = 0.04 \mathrm{nm}$ $\sigma_{jitter} \approx 800 \mathrm{nm}$
Structure angle jitter in main linac	0.1%	$\Delta \epsilon_y = 0.04 \mathrm{nm}$ $\sigma_{jitter} \approx 400 \mathrm{nradian}$
RF jitter in main linac	1%	
Crab cavity phase jitter	1%	$\sigma_{\phi} \approx 0.01^{\circ}$
Final doublet quadrupole jitter	1%	$\sigma_{jitter} \approx 0.1 \mathrm{nm}$
Other quadrupole jitter in BDS	1%	
•••	?%	

RF Constraints

- To limit the breakdown rate and the severeness of the breakdowns
- The maximum surface field has to be limited

 $\hat{E} < 260 \,\mathrm{MV/m}$

• The temperature rise at the surface needs to be limited

 $\Delta T < 56\,\mathrm{K}$

• The power flow needs to be limited

- related to the badness of a breakdown

empirical parameter is

 $P/(2\pi a)\tau^{\frac{1}{3}} < 18 \, \frac{\text{MW}}{\text{mm}} \text{ns}^{\frac{1}{3}}$

RF Work Flow

- Calculate RF properties of cells with different a/λ
 - structures can be constructed by interpolating between these values
- Remove all structures with a too high surface field
- Determine the pulse length supported by the structure
- Estimate long-range wake and chose bunch distance
 - bunch charge is given by beam dynamics
- Calculate RF to beam efficiency for the structure

Cost Model

- The machine should be optimised for lowest cost
 - power consumption will also limit the choice
- A simplified cost model can den developed
 - e.g. cost per unit length of linac
 - energy to be stored in drive beam accelerator modulators per pulse

- . . .

• With this model one can identify the cheapest machine

Work Flow

Results

Results 2

Required Beam Size (CLIC 500GeV)

- Roughly constant luminosity spectrum quality for constant N/σ_x
- Required is beam size is between 25 and 40 nm for beam with $N = 10^9$ particles
 - scales with the square of the charge
- For $\beta_x = 10 \text{ mm}$ and $N = 4 \times 10^9$ requires $\epsilon_x \approx 1 \,\mu\text{m}$ (N $\gamma^2 \, 10 \,\text{mm}$

$$\epsilon_{x,opt} \approx \left(\frac{1}{4 \times 10^9}\right) \frac{10 \text{ mm}}{\beta_x} \mu \text{m}$$

Relative Luminosity

• Relevant parameter is

$$D = \frac{\beta_x}{\mathrm{mm}} \frac{\epsilon_x}{\mu \mathrm{m}} \left(\frac{10^9}{N}\right)^2$$
$$\frac{L_{bx}}{N} \propto \frac{1}{\sqrt{D}}$$

- Require this value to be in the range 0.3–0.7
 - $\approx 30\%$ more luminosity for lower value
- NLC had $N = 7.5 \times 10^9 \beta_x = 10 \text{ mm}$ and $\epsilon_x = 4 \,\mu\text{m}$
 - *D* = 0.7
 - \Rightarrow close to optimum

Beam Jitter at Lower Energy

- Two main limitations
 - local beam stability
 - integrated residual effect along the machine
- To keep the local beam stability constant yields the limitation
 - $Nw_{\perp}(2\sigma_z) = \text{const}$
 - keeps the beam energy spread constant
- A second limitation arises from the integral effect

$$\frac{d}{ds}\frac{\Delta y'/\sigma_y'}{y/\sigma_y} \propto \frac{Nw_{\perp}\sigma_y}{E\sigma_y'}$$

• Integral using lattice scaling $\beta = \beta_0 \sqrt{E(s)/E_0}$ yields

$$\frac{\Delta y'/\sigma_y'}{y/\sigma_y} \propto \frac{Nw_\perp \beta_0}{G} \sqrt{\frac{E_f}{E_0}}$$

• $Nw_{\perp}(2\sigma_z) = \text{const}$ is stronger limitation as long as

$$G \ge \sqrt{E_f/E_{f,0}}G_0$$

- For 500 GeV $G \ge 41 \,\mathrm{MV/m}$

Emittance Growth at Lower Energy

• Express structure induced emittance growth as function of energy and gradient

$$\frac{d}{ds}\frac{\Delta\epsilon(s)}{\epsilon} \propto \left(\frac{Nw_{\perp}(2\sigma_z)\Delta y L_{cav}}{E(s)}\frac{1}{\sigma'_y(s)}\right)^2 \frac{1}{L_{cav}}$$

using the lattice scaling $\beta = \beta_0 \sqrt{E(s)/E_0}$ one finds

$$\Delta \epsilon_{cav} \propto \frac{N^2 w_{\perp}^2 (2\sigma_z) \Delta y^2 \beta_0 L_{tot,cav}}{G} \sqrt{\frac{E_f}{E_0}}$$

 \Rightarrow Could increase $Nw_{\perp}(2\sigma_z)$ by factor 2.4 at 500 GeV

- for constant gradient
- For constant Nw_{\perp} and L_{cav} we find $G \ge 41 \,\mathrm{MV/m}$
- For constant Nw_{\perp} and doubled L_{cav} we find $G \ge 82 \,\mathrm{MV/m}$

- but for $G = 50 \,\mathrm{MV/m}$ still only 1.6 times as high as at $3 \,\mathrm{TeV}$

• Dispersive emittance growth scales as

$$\Delta \epsilon_{tot,disp} \propto \frac{\Delta E^2 \Delta y^2}{G} \sqrt{\frac{E_f}{E_0}}$$

 \Rightarrow independent of structure length

• Total emittance growth should not increase much, first simulations confirm this

Aperture and Bunch Charge

- \bullet Procedure is similar to the one for 3 ${\rm TeV}$
 - $\sigma_y(N)$ from single bunch longitudinal wake
 - N, σ_z from transverse single bunch wake
- Keep local beam stability constant
 - leads to less bunch charge than for $3\,{\rm TeV}$
 - but longer bunches

Luminosity

Assume the following

- case A
 - emittance from $3\,{\rm TeV}$
 - beta-functions of $\beta_x = 10 \text{ mm}$ and $\beta_y = 0.1 \text{ mm}$ at the interaction point
- case B
 - horizontal emittance from $\epsilon_x = 3 \,\mu\text{m}$ at the damping ring to $\epsilon_x =$ $4 \,\mu\text{m}$ at the interaction point
 - vertical emittance from $\epsilon_y = 10 \text{ nm}$ at the damping ring to $\epsilon_y = 40 \text{ nm}$ at the interaction point
 - beta-functions of $\beta_x = 8 \text{ mm}$ and $\beta_y = 0.1 \text{ mm}$ at the interaction point

Summary

- You had a glimpse on the most important main linac topics
- To really understand experiments are nice
 - a cheap way is to use a simulation code
 - and play with it

Thanks

Many thanks to you for listening (I hope) and to those who helped prearing lecture