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We have looked rf structures in order to understand how to get an interaction between an 
rf field and a relativistic beam – the issues were mainly getting synchronism and getting 
the electric field to point in the right direction.  
 
Now we are going to look at the terminology and formalism to describe how much 
acceleration the beam actually gets. 
 
We are going to study how much energy you transfer to the beam from a certain stored 
energy in a standing wave cavity or power flow in a travelling wave cavity.  
 
We approach this in steps. 
• First look at a dc gap,  
• then an rf gap 
 
At this moment we will really focus on understanding the energy/power balance. 
 
Then we will look at how travelling wave structures are dealt with.  
 
Finally we will look at the details of efficiency in plus a number of special cases. In this 
section we cover not just getting the acceleration, but also getting it in a green and 
sustainable way! 
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Acceleration is typically measured in units of MV/m, ILC around 30 MV/m and CLIC 100 
MV/m. 
 
We are looking for the answers to precise questions like: 
• How much energy gain will I get from a particular structure if I put in 45 MW?  
• What fraction of my input power will go into accelerating a 1 amp beam? What happens 
if I increase the current to 2 amps?  
 
 

We will develop quantities which variously relate  
• voltage seen by the beam 
• gradient  
• energy of the rf fields 
• power of the rf fields 
• power of the beam 
  
We will of course tend to focus on the electric field since we are talking about accelerating 
electric charges!  

The basics 
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Let’s look together for a moment at a simple capacitor plate (big enough one so we don’t 
have to worry about edge effects) to make sure we are familiar with all the relevant 
quantities in a simple case. 

ground -  P [V] 

cathode anode 

d [m] gap size, A [m2]area 

charge q [C] 
Energy gained by bunch: 
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Now an rf ‘cavity’ (without being specific about the details of what it is):  
 
The ‘voltage’ of an rf gap is of course more complicated because the fields are 
oscillating while the beam takes the time to cross the gap. Remember the definition of 
the transit time factor from section 1:  

 dzzEVacc )(

We will use the numerator again, which is the effective gap 
voltage: 
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remember this is a 
complex number 

The magnitude is the 
highest acceleration you 
get from the cavity. 
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For the stored energy in a cavity we need to include both the electric and magnetic field: 
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Putting the two terms we can define: 
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R acc
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2

 Which has units of Ω. 

R/Q – relates the amount of acceleration (squared) you get for a given amount of stored 
energy.  If the electric fields are concentrated along the central axis of a cavity this term is 
large. You can use computer programs to get actual values. 
 
The numerator and denominator both scale with field squared, so it is independent of field 
level. It turns out that this term is independent of frequency as well for scaled geometries.  
 
You can do lots of useful calculations knowing this term. But let’s dig deeper. 
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Going a step further 

Our goal now is to derive and understand the loss factor, k. 
 
Accelerating a beam extracts energy from a cavity (and by the way that’s what we need 
to do to get high rf to beam efficiency). 
 
The beam gains energy when you accelerate so the rf fields must loose energy. 
 
We’ll attack this by considering the question “How much energy does a traversing beam 
leave behind in a particular mode of an empty cavity?” and then superimpose the 
solution on a filled cavity, which is how we normally think of acceleration. 
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In this section we will often consider the driven rf fields (driven by a klystron or 
whatever), consider the fields the beam leaves behind and add the two together to 
get our final answer – superposition of beam and rf fields. 
 
There is another subtlety we will use which is that you can break the problem up 
mode by mode, add them up and get the right answer. Another way of saying this is 
that all the eigenmodes of the cavity are orthogonal basis functions for all the possible 
fields in the cavity. You can expand reality as a Fourier series over all the cavity modes. 
 
We will also consider driving bunches, these are the real bunches of the problem with 
finite amount of charge, and witness charges. Witness charges are basically just 
integrals over fields but it is useful to think of charges which follow the main one but 
have almost no charge so don’t affect the fields themselves. 

Concepts we will use 
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A charge passing through a cavity leaves behind it the cavity with voltage in it, and hence 
filled with energy. The beam loses the same amount of energy. The loses energy through 
interacting with an electric field, which in fact comes from itself. 
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Something to think about: 
 
The charge interacting with the fields it makes itself is in direct analogy to the radiated 
electric field produced by a current that you see when discussing the retarded potential 
in free space. For a current in the y direction, 
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
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You normally think of currents producing magnetic fields but of course to transfer 
energy to an electromagnetic field there has to be movement of an electrical charge 
in the direction of an electric field. 
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The fundamental theorem of beam loading 

The fundamental theorem of beam loading says that the voltage seen by beam which 
has traversed a cavity is half the voltage it leaves behind, that is the one that a following 
witness bunch would see. 
 
A non-rigorous way of seeing this, is that the cavity is empty when the beam enters and 
only full when it leaves – so on average it sees the cavity only half full (or half empty, 
like the proverbial glass!). A more rigorous understanding requires the formalism of 
longitudinal wakefields we will cover in section 4. 
 
Is this easier to understand than the free-space case? 
 
But in the mean time let’s introduce a loss factor k which satisfies this factor of two. The 
voltage left is proportional to the charge so:  
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The loss factor k 

Let’s now consider conservation of energy, what 
the bunch loses the cavity gains: 
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So the higher the R/Q the more field left behind in a mode by a given charge. 

Equations we will 
use 
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Now let’s look at a cavity that already has 
fields in it 

Everybody’s first understanding is that the beam is just sees the accelerating fields that are 
there because we pump lots of microwaves into a cavity. But this is only true if the bunch 
charge is low, and we have negligible rf-to-beam efficiency. 
 
In a linear collider we have rf-to-beam efficiency in the range of 30% to deal with the 10’s of 
MW average power beams we need to accelerate.  
 
So let’s now look at a cavity with field in it that gives V0 and currents which are leaving 
fields which are non-negligible. 
 
The essential insight is that a passing bunch reduces the fields inside a filled cavity in 
exactly the same way as an empty cavity - superposition: 
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Consistent! 

Checking consistency through energy balance 
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Tonight you will re-do this consistency check – 
but with arbitrary input phase! 

V 

ΔV 
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In a real cavity, we of course have the losses we saw in section 1. To deal with this we 
introduce the shunt impedance. We start with R/Q, which is independent of any losses, 
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 And take our definition of Q,  
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The units of R are again Ω, and a typical normal conducting cavity has an R in the range of 
M Ω. Note that both numerator and denominator scale with field squared. R is a measure 
of the acceleration to the losses and is often a quantity you optimize when designing an rf 
cavity. 
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Now travelling wave structures 

We’ve just gone through an analysis where we have considered stored energy. This is 
straight forward to apply to standing wave structures 
 
You will be doing some numerical examples in homework problems. 
 
But the basic concepts remain the same for travelling wave structures. We have to 
extends things a bit and make sure we are accounting for all the energy going in and out 
of our problem.  
 
Firstly we are going to consider a single cell of an infinitely long periodic structure which 
has been tuned to vphase=c, i.e. a synchronous wave. This is quite reasonable since tuned 
cells are usually what we deal with.  
 
The fact that the phase and beam velocities are the same gives us the periodicity to 
easily do all of our calculations on a single cell. 
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Single cell electric field pattern 2/3 phase advance 
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Single cell magnetic field pattern 2/3 phase advance 
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Standing to travelling wave 

We will take over our definition of R/Q and shunt impedance and define it per cell, but 
then divide by the length of the cell, l, to get R’/Q and R’ which are per unit length. 
 
The other thing we will do is to put these quantities in terms of power flow rather than 
stored energy since this is the natural quantity for travelling wave structures. 
 
The relationship between power flow and stored energy is, 

WvP g

And we can get the relationship between accelerating gradient G, voltage per unit 
length (which is valid over one cell length), and power flow, 

P
Q

R
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Power flow in disk loaded waveguide 2/3 phase advance 

Real part of complex 
Poynting vector 
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Now to meaningfully deal with travelling wave accelerating structures 
we will derive a differential equation which accounts for: 
 
• power flowing along the structure 
• power being transferred to the beam (acceleration) 
• power being lost to the cavity walls  
 

Seeing the derivation of the differential equation will give you insight 
into how to approach specific problems and give you practice using 
the terms we have introduced. 
 
In our initial analysis, we are only going to consider steady state 
conditions. We will generalize later. 
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We now need to make a little jump – from the beam loading due to a single bunch to 
thinking about beam loading from a current. 

We know how to deal with a  
single charge q: 

But we can add the voltages 
from successive bunches if they 
are spaced by integer number of 
fundamental wavelengths: 

which give us a current: 

Δt 

t

q
I




We can also think of the Fourier series of the bunch train charge and make all our 
integrals of R/Q etc. for a wavelength equal to the mode we are considering. It 
amounts to the same thing.  

Charge to current 
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Power flow and beam loading picture 

Slice of power travelling at vg 

Beam adds (in phase or 180 degrees out of phase) voltage to power slice. 
Cavity walls attenuate power as it propagates. 

Bunch train travelling at c 
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Let’s set up a differential equation based on power conservation  

The power losses to the walls are easiest: P
Qvdz

dP

g




𝑑𝑃

𝑑𝑧
= −𝑃𝑤𝑎𝑙𝑙

′ − 𝑃𝑏𝑒𝑎𝑚
′  

Power to the wall 

Power to the beam 
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Continuing bravely onwards 
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We finally get: 

Beam loading term 

Wall losses term 
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Tonight, during the homework session, you will re-derive and/or re-express 
this differential equation in terms of gradient. Here again are the terms you 
will need: 

𝑑𝑃

𝑑𝑧
= −𝑃𝑤𝑎𝑙𝑙

′ − 𝑃𝑏𝑒𝑎𝑚
′  

𝑃 = 𝑣𝑔
𝐺2

𝜔𝑅′ 𝑄 
 Power flow relations 

𝑃𝑤𝑎𝑙𝑙
′ =

𝐺2

𝑅′
 and 𝑄0 =

𝑊′𝜔

𝑃′
 Wall losses 

𝑣𝑔 =
𝑃

𝑊′
 and 

𝑃𝑏𝑒𝑎𝑚 = 𝐺𝐼 Beam acceleration 
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The general differential equation in terms of gradient 

A. Lunin, V. Yakovlev, A. Grudiev PRSTAB, 14, 052001 (2011) 
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Solutions in closed form 
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An example of the solutions to this equation for constant gradient (all cells are 
the same): 

Ibeam

1.08

0.2 0.4 0.6 0.8 1.0

2 107

2 107

4 107
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8 107

1 108

100 MV/m 

rf power in 

Less power out 

Beam accelerated 

Field goes down 
because power 
goes into beam. 

Field goes down 
because of wall 
losses. 

Wall losses 

Distance along structure 
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Now we ask ourselves – How efficiently have we converted rf power into beam power? 
To ask it using accelerator jargon – What is the rf-to-beam efficiency? 
This is one of the most important performance issues for a normal conducting linear 
collider since it directly affects the overall performance. 

Wall losses 

Output coupler 

Power into structure 

Power into beam ∆𝑃𝑏𝑒𝑎𝑚= 𝐼 𝐺 𝐿 

𝜂 =
∆𝑃𝑏𝑒𝑎𝑚
𝑃𝑖𝑛

=
𝐼

𝑃𝑖𝑛
 𝐺 𝑧 𝑑𝑧
𝐿

0
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0.2 0.4 0.6 0.8 1.0
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Different amounts of beam loading and efficiency 

0 current 

Very efficient 

More current, 
more efficient 

Interesting question! 

Distance along structure 



HFSS Port and Plane Wave Excitations 

33 
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Now let’s assume that every cell of the structure is the same. 
 
The jargon for this is that we have a constant impedance structure.  
 
This simplifies the equations a lot to give: 
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Constant impedance travelling wave structure, length L 

𝐺 𝑧 = 𝐺 0 𝑒−𝛼𝑧 − 𝐼𝑅′ 1 − 𝑒−𝛼𝑧  

𝛼 =
𝜔

2𝑄𝑣𝑔
 

Note that: 𝐺 ∞ = −𝐼𝑅′ Ohms law! 

𝜂 = 2𝑌 1 − 𝑒−𝛼𝐿 + 2𝑌2 1 − 𝛼𝐿 − 𝑒−𝛼𝐿  

Where: 𝑌 =
𝐼𝑅′

𝐺 0
 

𝐺 =
𝐺 0

𝛼𝐿
1 − 𝑒−𝛼𝐿 +

𝐼𝑅′

𝛼𝐿
1 − 𝛼𝐿 − 𝑒−𝛼𝐿  
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If we don’t do anything the fields drop along the length of the structure. We will see in the 
section on high-gradients that this is not optimum, we lose high-gradient potential 
because we are limited by the front of the structure. 
 
Instead we taper the iris aperture of the structure down. 
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2 107
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1 108

Accelerating 
Gradient [MV/m] 

Distance along structure 

Optimising the accelerating structures - tapering 
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Tapered structures – iris aperture goes down to compensate for dissipated power while 
maintaining phase advance.  

R’/Q goes up and vg goes down so more accelerating gradient for a given 
power flow. 
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Solution to linearly tapered group velocity structure 

𝑣𝑔 = 𝑣𝑔 0 1 + 𝑎𝑧  𝛼0 =
𝜔

2𝑄𝑣𝑔 0
 

𝐺 𝑧 = 𝐺 0 1 + 𝑎𝑧
−
𝛼0
𝑎 +

1
2  

𝐺𝑙𝑜𝑎𝑑𝑒𝑑 𝑧 = 𝐺 𝑧 − I𝑅
′
𝛼0
𝑎

1

𝛼0
𝑎
+
1
2

1 − 1 + 𝑎𝑧
−
𝛼0
𝑎 +

1
2  
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Unloaded structure with different degrees of group velocity tapering 

𝑣𝑔 = 𝑣𝑔 0 1 + 𝑎𝑧  

𝛼 =
𝜔

2𝑄𝑣𝑔
 𝛼0 =

𝜔

2𝑄𝑣𝑔 0
 

𝑎 = 0 

𝑎 = −2𝛼0 

𝑎 = −3𝛼0 
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Now we will play around with some examples 
 
• Constant gradient  
• Tapered 

 
Vary structure parameters and current to see the 
effect on efficiency, average gradient etc. 



Room temperature RF 
Part 2.1: Strong beam-cavity coupling 

(beam loading) 

30/10/2010 
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TWS efficiency in pulsed regime 
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In simplest case of vg=const, R’/Q0=const, Q0=∞   

G(z,t) 

z 
Ls 

G0 
G(z,t1) G(z,t3) G(z,t2) G(z,tf) 

z3 z1 z2 

tn = zn/vg;  tf = Ls/vg In general, in TWS: 



Transient beam loading in TWS 

Let’s continue with the simplest case of vg=const, R’/Q0=const, Q0=∞   
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Compensation of the transient beam loading in TWS 

Let’s continue with the simplest case of vg=const, R’/Q0=const, Q0=∞   

tf tp 

tinj=tf 

 

Two conditions: 
1. Ramping the input power 

during the structure filling in 
such a way that the loaded 
gradient profile along the 
structure is formed.  

2. The beam is injected right at 
the moment the structure is 
filled. (same as for SWS) 
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Transient beam loading in TWS 

Let’s consider general case of vg(z), R’(z), Q0(z) *   
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Model approximations: 
1. Smooth propagation of 

energy along the 
structure (no reflections) 

2. No effects related to the 
finite bandwidth of the 
signal and the structure 
(TWS bandwidth >> signal 
bandwidth) 

3. Time of flight of the beam 
through the structure is 
much shorter than the 
filling time (Ls/c << tf) 

[*] – A. Lunin, V. Yakovlev, A. Grudiev PRSTAB, 14, 052001 (2011) 
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Uncompensated pulse 



Transient beam loading in TWS (cont.) 

where:   
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Compensation of the transient beam loading in TWS 

In general case of vg(z), R’(z), Q0(z)  
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Compensated pulse 



Compensation of the transient beam loading in 
constant impedance TWS 

Let’s consider the case of constant impedance TWS: vg=const, R’=const, Q0=const   

Uncompensated case 
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Compensated case 

 



Compensation of the transient beam loading in 
constant gradient TWS 

Constant gradient: a=-2α0 

Let’s consider a case of linear vg-tapering such that Q0=const, R’=const but vg = vg0(1+az):  

a=-3α0 



CLIC main linac accelerating structure in steady-state 

Parameters:  input  – output 

f [ GHz] 12 

Ls [m] 0.25 

vg/c [%]  1.7 – 0.8 

Q0 6100 – 6300 

R’ [MΩ/m] 90 – 110 

Ib [A] 1.3 

tb [ns] 156 

<G> [MV/m] 100 

In reality, vg ≠ const, R’ ≠ const, Q0 ≠ const and 
general expressions must be applied but often a 
good estimate can be done by averaging R’ and Q0 
and assuming linear variation of vg 
In this case: <Q0>=6200; <R’>=100 MΩ/m; and 
vg/c = 1.7 - 0.9/0.25·z   

Parameters calculated 

Pin [MW] 67.6 

ηCW [%]  48 

tf [ns] 70 

η [%]  33 

0 0.05 0.1 0.15 0.2 0.25
0

2

4

6

8

10

12

14
x 10

7

z[m]

G
[V

/m
];

 v
g
[m

/s
]

 

 


CW = 0.48

G

G
l

v
g



CLIC main linac accelerating structure during transient 



Parameters:  input  – output 

f [ GHz] 3 

Ls [m] 1.22 

vg/c [%]  5.2 – 2.3 

Q0 14000 – 11000 

R’ [MΩ/m] 42 – 33 

Ib [A] 4 

Pin [MW] 33 

SICA - CTF3 3GHz accelerating structure in steady-state 

Parameters calculated 

ηCW [%]  95 

This structure is designed to operate in full beam loading regime 
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CLIC Test Facility 
(CTF3) 
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High current, full 
beam-loading 
operation 

Operation of 
isochronous lines and 
rings 

Bunch phase coding 

Beam recombination 
and current 
multiplication  by RF 
deflectors 

12 GHz power 
generation by drive 
beam deceleration 
 
High-gradient two-
beam acceleration 

4 A, 1.4us 

120 MeV 

30 A, 140 ns 

120 MeV 

30 A, 140 ns 

60 MeV 



Drive Beam Generation 
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SiC load 

damping  
slot 

10 m 

RF pulse at output 

RF pulse at structure input 

95.3% RF to beam efficiency 

Stable high current acceleration 

Current stability 

Isochronicity, phase coding 

Factor 8 current & frequency multiplication 

Pulse charge measurement 

Full beam loading acceleration 

Factor 8 combination 

Most RF power 
to beam 

High beam 
current 

RF in No RF to load 

“short” structure – low Ohmic losses 


