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We have looked rf structures in order to understand how to get an interaction between an
rf field and a relativistic beam — the issues were mainly getting synchronism and getting
the electric field to point in the right direction.

Now we are going to look at the terminology and formalism to describe how much
acceleration the beam actually gets.

We are going to study how much energy you transfer to the beam from a certain stored
energy in a standing wave cavity or power flow in a travelling wave cavity.

We approach this in steps.

* First look at a dc gap,

* then an rf gap

At this moment we will really focus on understanding the energy/power balance.
Then we will look at how travelling wave structures are dealt with.

Finally we will look at the details of efficiency in plus a number of special cases. In this

section we cover not just getting the acceleration, but also getting it in a green and
sustainable way!



The basics

Acceleration is typically measured in units of MV/m, ILC around 30 MV/m and CLIC 100
MV/m.

We are looking for the answers to precise questions like:

* How much energy gain will | get from a particular structure if | put in 45 MW?

* What fraction of my input power will go into accelerating a 1 amp beam? What happens
if I increase the current to 2 amps?

We will develop quantities which variously relate
* voltage seen by the beam

* gradient

* energy of the rf fields

* power of the rf fields

* power of the beam

We will of course tend to focus on the electric field since we are talking about accelerating
electric charges!



Let’s look together for a moment at a simple capacitor plate (big enough one so we don’t
have to worry about edge effects) to make sure we are familiar with all the relevant
guantities in a simple case.

d [m] gap size, A [m?]area

Electric field: cathode anode

Energy gained by bunch:
U =P[V]q[C]=Pq[J]

charge g [C] O

Stored energy in electric field:

_ 1 2
W—IEEOE dv

- P[V] ground



Now an rf ‘cavity’ (without being specific about the details of what it is):

The ‘voltage’ of an rf gap is of course more complicated because the fields are
oscillating while the beam takes the time to cross the gap. Remember the definition of

the transit time factor from section 1:

Vo j E(z)dz

A= _[Ezdz - J'Ezdz

We will use the numerator again, which is the effective gap
voltage:

Vool = [ E(2)0iZ

AR

The magnitude is the

highest acceleration you remember this is a

get from the cavity. complex number
TM,,, mode



For the stored energy in a cavity we need to include both the electric and magnetic field:

1 1
W =[] 5E? +—B’ |dV
2 Ho
Putting the two terms we can define:
2
R _ ’VaCC‘ Which has units of Q.

Q oW

R/Q — relates the amount of acceleration (squared) you get for a given amount of stored
energy. If the electric fields are concentrated along the central axis of a cavity this term is
large. You can use computer programs to get actual values.

The numerator and denominator both scale with field squared, so it is independent of field
level. It turns out that this term is independent of frequency as well for scaled geometries.

You can do lots of useful calculations knowing this term. But let’s dig deeper.



Going a step further

Our goal now is to derive and understand the loss factor, k.

Accelerating a beam extracts energy from a cavity (and by the way that’s what we need
to do to get high rf to beam efficiency).

The beam gains energy when you accelerate so the rf fields must loose energy.
We’ll attack this by considering the question “How much energy does a traversing beam

leave behind in a particular mode of an empty cavity?” and then superimpose the
solution on a filled cavity, which is how we normally think of acceleration.



Concepts we will use

In this section we will often consider the driven rf fields (driven by a klystron or
whatever), consider the fields the beam leaves behind and add the two together to
get our final answer — superposition of beam and rf fields.

There is another subtlety we will use which is that you can break the problem up
mode by mode, add them up and get the right answer. Another way of saying this is
that all the eigenmodes of the cavity are orthogonal basis functions for all the possible
fields in the cavity. You can expand reality as a Fourier series over all the cavity modes.

We will also consider driving bunches, these are the real bunches of the problem with
finite amount of charge, and witness charges. Witness charges are basically just
integrals over fields but it is useful to think of charges which follow the main one but
have almost no charge so don’t affect the fields themselves.



A charge passing through a cavity leaves behind it the cavity with voltage in it, and hence
filled with energy. The beam loses the same amount of energy. The loses energy through
interacting with an electric field, which in fact comes from itself.
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Something to think about:

The charge interacting with the fields it makes itself is in direct analogy to the radiated
electric field produced by a current that you see when discussing the retarded potential
in free space. For a current in the y direction,

£ ()= J (tz—gx/c)

You normally think of currents producing magnetic fields but of course to transfer

energy to an electromagnetic field there has to be movement of an electrical charge
in the direction of an electric field.



The fundamental theorem of beam loading

The fundamental theorem of beam loading says that the voltage seen by beam which

has traversed a cavity is half the voltage it leaves behind, that is the one that a following
witness bunch would see.

A non-rigorous way of seeing this, is that the cavity is empty when the beam enters and
only full when it leaves — so on average it sees the cavity only half full (or half empty,
like the proverbial glass!). A more rigorous understanding requires the formalism of
longitudinal wakefields we will cover in section 4.

Is this easier to understand than the free-space case?

But in the mean time let’s introduce a loss factor k which satisfies this factor of two. The
voltage left is proportional to the charge so:

V... =Kkqg

seen

Vleft = qu



The loss factor k

Let’s now consider conservation of energy, what
the bunch loses the cavity gains:

AUbeam :Vseenq — qu
AU, . =AU

AU left — qu
Vleft
4k

beam

) k=

Veeen = KO

S

V.. =2K(Q

R . ’Vacc‘2
Q W

Equations we will
use

1 Vleft

4 AU,

_oR
4 Q

So the higher the R/Q the more field left behind in a mode by a given charge.
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Now let’s look at a cavity that already has
fields in it

Everybody’s first understanding is that the beam is just sees the accelerating fields that are
there because we pump lots of microwaves into a cavity. But this is only true if the bunch
charge is low, and we have negligible rf-to-beam efficiency.

In a linear collider we have rf-to-beam efficiency in the range of 30% to deal with the 10’s of
MW average power beams we need to accelerate.

So let’s now look at a cavity with field in it that gives V, and currents which are leaving
fields which are non-negligible.

The essential insight is that a passing bunch reduces the fields inside a filled cavity in
exactly the same way as an empty cavity - superposition:

AV =-2kqg= _oR

y 2Q

> >

AV




Checking consistency through energy balance

Beam Cavity

Before bunch passage

AU beam — Vseenq

2
= (Vo —ka)g U= Z—C’k
=V0q — qu After bunch passage
U (v, —2kq)’

, 4k

Uy~ WG Ve +avika-4k’q’)
4k
=Vo(— qu

Consistent!
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Tonight you will re-do this consistency check —
but with arbitrary input phase!

AV

_——



In a real cavity, we of course have the losses we saw in section 1. To deal with this we
introduce the shunt impedance. We start with R/Q, which is independent of any losses,

R _ ’Vacc‘2

And take our definition of Q,

Q wW
Q _ oW To define the shunt impedance,
I:)|OSS
2
R = ’Vacc‘
R

0SS

The units of R are again ), and a typical normal conducting cavity has an R in the range of
M Q. Note that both numerator and denominator scale with field squared. R is a measure

of the acceleration to the losses and is often a quantity you optimize when designing an rf
cavity.



Now travelling wave structures

We've just gone through an analysis where we have considered stored energy. This is
straight forward to apply to standing wave structures

You will be doing some numerical examples in homework problems.

But the basic concepts remain the same for travelling wave structures. We have to
extends things a bit and make sure we are accounting for all the energy going in and out
of our problem.

Firstly we are going to consider a single cell of an infinitely long periodic structure which
has been tuned to v,,,.=c, i.e. a synchronous wave. This is quite reasonable since tuned
cells are usually what we deal with.

The fact that the phase and beam velocities are the same gives us the periodicity to
easily do all of our calculations on a single cell.



Single cell electric field pattern 2nt/3 phase advance
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Single cell magnetic field pattern 27t/3 phase advance
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Standing to travelling wave

We will take over our definition of R/Q and shunt impedance and define it per cell, but
then divide by the length of the cell, /, to get R’/Q and R’ which are per unit length.

The other thing we will do is to put these quantities in terms of power flow rather than
stored energy since this is the natural quantity for travelling wave structures.

The relationship between power flow and stored energy is,

P=v,W

And we can get the relationship between accelerating gradient G, voltage per unit
length (which is valid over one cell length), and power flow,

G = a)iiP

Vg




Power flow in disk loaded waveguide 21t/3 phase advance

Real part of complex
Poynting vector
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Now to meaningfully deal with travelling wave accelerating structures
we will derive a differential equation which accounts for:

» power flowing along the structure
* power being transferred to the beam (acceleration)
* power being lost to the cavity walls

Seeing the derivation of the differential equation will give you insight
into how to approach specific problems and give you practice using
the terms we have introduced.

In our initial analysis, we are only going to consider steady state
conditions. We will generalize later.



Charge to current

We now need to make a little jump — from the beam loading due to a single bunch to
thinking about beam loading from a current.

We know how to deal with a

single charge q: ¢

But we can add the voltages

from successive bunches if they At
are spaced by integer number of <
fundamental wavelengths: e © ¢ o o o o

!

which give us a current: | =—
At

We can also think of the Fourier series of the bunch train charge and make all our
integrals of R/Q etc. for a wavelength equal to the mode we are considering. It
amounts to the same thing.



Power flow and beam loading picture

Slice of power travelling at v,

Bunch train travelling at c

Beam adds (in phase or 180 degrees out of phase) voltage to power slice.
Cavity walls attenuate power as it propagates.




Let’s set up a differential equation based on power conservation

.Q..Q)’. >

Power to the beam

]
1
H
\

Power to the wall

dP , ,
E = —Pyau — Ppeam

dP o

The power losses to the walls are easiest: _ -

dz Qv,



Now power going from the rf to the beam

GZ
P=v, 7
a)_
Q
G =-k’g
dG =-k'dq
= —k'ldt

differentiating

dP =v,

2 [ RP
s R17Qy,

Q

:—\/a)vg — IP¥*dt
Q



Continuing bravely onwards

dP dP dt
dz dt dz
~1dP
_V dt Beam loading term

- /QEIPW
V Q \ We finally get:
P op 2R pr
dz v, Q v, Q

T

Wall losses term
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Tonight, during the homework session, you will re-derive and/or re-express
this differential equation in terms of gradient. Here again are the terms you
will need:

d_P — —p! — P/
dz wall beam
P=v ¢ and V. = P Power flow relations
SwR'/Q 9w
G*> W'w
p! - — and Qo = Wall losses
wall R/ 0 Pl

Pyoam = GI Beam acceleration



The general differential equation in terms of gradient

dG Gl[ldv; 1dQ 1dR w IR" w

dz~ 2| dz TQdz R dz v,0] 2 v,0

G(0) =

Solutions in closed form

_ 75(0) Q) |R'(?) = Igmum
#0 = G(O)J e )\/Q(Z) JR ION

wR'(2) .
G(2) Q(2)vy(2)

Groadea(2) = G(2) ll _j

A. Lunin, V. Yakovlev, A. Grudiev PRSTAB, 14, 052001 (2011)



An example of the solutions to this equation for constant gradient (all cells are

the same):

100 MV/m

rf power in

Ib g
eam o

EDIHIEEIE]

Field goes down
because of wall
losses.

Field goes down
because power
goes into beam.

Distance along structure

Less power out

Beam accelerated
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Now we ask ourselves — How efficiently have we converted rf power into beam power?

To ask it using accelerator jargon — What is the rf-to-beam efficiency?
This is one of the most important performance issues for a normal conducting linear

collider since it directly affects the overall performance.

Power into structure
Output coupler

Wall losses ﬁ
AN

Power into beam APy oqm= 1{G)L

_ APbeam — L LG(Z)dZ

n
P; Pin Jo
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107

107}

107"

Different amounts of beam loading and efficiency

107!

Distance along structure

O current

More current,
more efficient

Very efficient

Interesting question!
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Now let’s assume that every cell of the structure is the same.
The jargon for this is that we have a constant impedance structure.

This simplifies the equations a lot to give:



Constant impedance travelling wave structure, length L

G(z) =G(0)e * —[R'(1 — e™%%)

_ w
“ T 20,
Note that: G(0) = —IR' Ohms law!
G(0 IR’
(G) = Qm —e Y+ — (1 —alL—e %)
alL alL

n=2Y1-e %) +2Y%(1 — alL — e~ %)

- IR’
-~ G(0)

Where:



Optimising the accelerating structures - tapering

6
Accelerating

Gradient [MV/m] 4

2

108

10’

107 -
107 .

107 |

I —

107 L

0.2 0.4 0.6 0.8 1.0

Distance along structure

If we don’t do anything the fields drop along the length of the structure. We will see in the
section on high-gradients that this is not optimum, we lose high-gradient potential
because we are limited by the front of the structure.

Instead we taper the iris aperture of the structure down.



Tapered structures — iris aperture goes down to compensate for dissipated power while

maintaining phase advance.

R’/Q goes up and v, goes down so more accelerating gradient for a given

power flow.

1R’ p
125
+
+
X
L ox ox x ¥ X
11.875 X X B T
N +
I
O +
> +
o 1125
5 +
> +
o +
+
10.625
10
0 30 60 90 120 150 180

phase advance per cell [degrees]
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Solution to linearly tapered group velocity structure

. w
 2Qu,(0)

vy = 1v,(0)(1 + az) a

6(2) = G(0O)(1 + az) (a2

Groadeda(z) = G(z) — IR’ C;O p ! [1 -1+ aZ)_(%-%)]

%o
a+

N[ =
N—



Unloaded structure with different degrees of group velocity tapering

vy = 1v43(0)(1 + az)

14 108

, i a=—3«a
12 108j / 0
1.0 108+ a=—2a,
80 107 ‘ 

i a=20
6.0 107 -
40 107+
20 107
0.0 0.2 0.4 0.6 0.8 1.0
W W
a = Aoy =
szg ZQUg (0)
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Now we will play around with some examples

 Constant gradient
 Tapered

Vary structure parameters and current to see the
effect on efficiency, average gradient etc.



Room temperature RF

Part 2.1: Strong beam-cavity coupling
(beam loading)

30/10/2010
A.Grudiev
5th JASLC, Villars-sur-Ollon, CH



TWS efficiency in pulsed regime

In pulse regime, V # const is a function of time.
In simplest case of v,=const, R’/Q,=const, Q,=o°

t,=z,/v,, ti=LJ/Vv _
. Glz,t) = 2lVg b= Lo/ g In general, in TWS:
°l6(zt)| Glzt)| Glzt)| Gt sed Pty t,—t,
rf —to—beam — W = 1t _to—beam t—
in “p p
L
- 0z - :
Z Z - i where:t, = ,—filling time
Lo R !vg(z)
V(t)=[G(z,t)dz
Vv
P.




Let’s continue with the simplest case of v =const, R’/Qg=const, Q =

Transient beam loading in TWS

A
G(Z,t) Ib =0; 0<t< tf G(Z,t) Ib >0; tinj <t< tinj+tf
0 Glzt,) G(z,t,) G(zt;)| G(zt) GO G(z.t))
I
7 b
zZ, Z, zZ, L,

\Y, \ o

\7

Pin //

l, /




Compensation of the transient beam loading in TWS

Let’s continue with the simplest case of Vv =const, R’/Qg=const, Q =

G(z,t)

Structure filling process:
l,=0;, 0<t<t;

G(z,t,)

G (z:tf)

G(z,t)

GO\

G(zt,)

Injection right after filling:

l, > 0;

Two conditions:
Ramping the input power
during the structure filling in
such a way that the loaded
gradient profile along the
structure is formed.

The beam is injected right at
the moment the structure is
filled. (same as for SWS)

t



Transient beam loading in TWS

Let’s consider general case of v,(z), R’(z), Qy(z) *

1.Steady — State solution : G, = const; I, = const

G(z) =G,0(2)
G, (2) =G(2) G, (2) =G i ;
2.Time—dependentmodel: G, = Go(t), I, =1,(t)

G(2,1) =G, (t—7(2))g(D)H (t - 7(2))

( . ) 1 (Z)
G, (z,t) = | (t—7 T Hit—7 T
2.9=9() (t-r(@)+7(@)H(t-7(2) +2(2)) (7}
where:r(z)—z' 0z _ timetoarrivetoz
ovg(Z)

G, (z,t) =G(z,1)-G,(z,1)

dz'

Model approximations:

1.

3.

Smooth propagation of
energy along the
structure (no reflections)
No effects related to the
finite bandwidth of the
signal and the structure
(TWS bandwidth >> signal
bandwidth)

Time of flight of the beam
through the structure is
much shorter than the
filling time (L,/c << t;)

[*] — A. Lunin, V. Yakovlev, A. Grudiev PRSTAB, 14, 052001 (2011)



V[IV], PIMW)2, I[A]x10
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Transient beam loading in TWS (cont.)
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Ll L
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where: |V, (t) =V (t) -V, (t); -loaded voltage

V(1) :_[G(z,t)dz; —unloaded voltage
0

V, (1) = ij (z,t)dz; —beam voltage
0




Compensation of the transient beam loading in TWS

In general case of vg(z), R’(z), Qq(2)

If In steady- state:

G(z) =G,g(z) is unloaded solution and

G,(z) Iis loaded solution for I,

Theninput gradient during filling timeO <t <t; :

z(t)
G, (1) =Gy (t,) - jl f(z)

dz'

where: z(t) is thesolution of t(z) = _[ ( )'
v, (2




V[V], P[MW}/2, I[A]x10
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Compensated pulse
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Compensation of the transient beam loading in
constant impedance TWS

Let’s consider the case of constant impedance TWS: v,=const, R’—const Qo—const

Z
G(2)=Ge %%; G(2)=Ge “ - I,R"-[l-e %) _Zz
3V (z) v,
. L av, (t. —
when theramp-functionforO<t<t,=—: G,(t) =G, (t;) - IbR'-(e ot )—1j
Vv
g
Uncompensated case Compensated case
- i L
05+ ;E.';M
”D 01 2 03 04 05 OB 1 & 043 1 ¢ o 2 03 04 0OE OB A g 03 i
ms m=
1 — ; 1 : -
. = .‘._'_.-—'-"7 ”
& | ___.n 04 # =
'L::n
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o
L




Compensation of the transient beam loading in
constant gradient TWS

Let’s consider a case of linear v,-tapering such that Qj=const, R’=const but v, = v,,(1+az):

Constant gradient: a=-2a,

a=-3a,

15+
Z 1|
o
L
I'I i 1 1
0 o1 2 L= 04 0.5 06 ] & 04
FA) |
5
1.5




CLIC main linac accelerating structure in steady-state

HRRREERREEEEEEEREEEEEREERE RN

Parameters: input — output In reality, Vg # const, R’ # const, Q, # const and

f [ GHz] 12 general expressions must be applied but often a
good estimate can be done by averaging R” and Q,

L, [m] 0.25 o L
and assuming linear variation of v,
v./c [%] 1.7-0.8 . . _ Dl )
g In this case: <Q,>=6200; <R’>=100 MQ/m; and
Q 6100 - 6300 vg/c =1.7-0.9/0.25z
R’ [MQ/m] 90-110 10"
I, [A] 1.3 “
t, [ns] 156 2|
ns
IOG MV, 100 7 T~
<G> [MV/m] é ) \\
$ ~

E 6 G
Parameters calculated = . G,
P, [MW] 67.6 =048 Yg

2
NV [%] 48
o : _
0 0.05 0.1 0.15 0.2 0.25

t: [ns] 70 i

n [%] 33



CLIC main linac accelerating structure during transient
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SICA - CTF3 3GHz accelerating structure in steady-state

Parameters: input — output

f [ GHz] 3
L, [m] 1.22
vg/c [%] 5.2-2.3
Q, 14000 — 11000
R’ [MQ/m] 42 - 33
Iy, [A] 4
Pin [MW] 33
' X 107
2r
Parameters calculated
I_lD) —-\
£
E \ \-
© 0.5 c \‘
G'I \
Vv
g
| | \-\
0 0.2 0.4 0.6 0.8 1 1.2

z [m]



CLIC Test Facility
(CTF3)

Operation of
isochronous lines and
rings

Delay
Loop

4 A, 1.4us
120 MeV

Combiner

Linac 30 A, 140 ns Ring

120 MeV Beam recombination

and current
CALIFES

multiplication by RF
Probe Beam

High current, full
beam-loading
operation

deflectors
Injector

TBTS

12 GHz power
generation by drive
30A, 140 ns C L Ex beam deceleration
60 MeV
. High-gradient two-
|nJ eCtor beam acceleration

TBL

T

Bunch phase coding
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