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Objectives of this course are to: 
 
Give you an insight into the most important issues which drive the design and 
performance of the main linac in a normal conducting linear collider:  
accelerating gradient, efficiency and wakefields. 
 
The way in which we will go about this: 
 
1. Review together a few key points of electromagnetic theory to establish a 

common language and as a basis for the rest of the lectures . 
2. Introduce the concepts and formalism for dealing with the coupling between rf 

fields and beams. 
3. Then we will look at linear collider hardware to see how it works and how the 

concepts from sections 1 and 2 are implemented.  
4. Study wakefields – these are beam/structure interactions which can lead to 

instabilities in the beams. 
5. Make a survey of methods used to suppress transverse wakefields. Wakefield 

suppression has a strong impact on structure design and performance. 
6. Look at the complex world of high-gradients and high-powers. 
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I hope over the next few 
days these objects become 
good friends! 



In this section we will:  
 
1. Review together a few illustrative examples from electromagnetic theory. 
2. Study the main characteristics the fields in the types of rf structures used in 

accelerators. 
3. Understand these fields interact with a relativistic beam. 
 
The way we will go about this is to cover: 
 
1. Remind our selves about plane waves, waveguides and resonant cavities. 
2. Introduce the idea of beam-rf synchronism and periodic structures. 
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I will use the CLIC frequency, European X-band, for 
examples so  

f = 11.994 GHz 
unless noted otherwise. 
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Let’s start by looking at the solution to Maxwell’s equations in free space, no charges, 
no dielectrics, just simple plane waves. 
 
We don’t have time to do a derivation of the solution,  
• we have learned, and are familiar, with all sorts of different techniques and time is 
short 
• I would like to emphasize understanding the essential characteristics of the solutions 
• all the real rf structure geometries are so complicated that we get the fields from 
computer simulation anyway.  A key skill in the business is to understand the fields and 
how they behave. 
 
We can re-write Maxwell’s equations to look like this for our special case: 
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The solution of these equations in one dimension are waves with electric and 
magnetic fields  
• in phase and   
• perpendicular to each other and to the direction of propagation.  
For example: 
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In order to satisfy Maxwell’s equations we get the condition that: 
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It’s quite practical to think of this same formula but in terms of frequency and 
wavelength: 
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Let’s look at just one of the components, the electric field: 



To help you visualize the wave each component, E say, at a single frequency looks 
like: 

animation by Erk Jensen 
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A key feature of free-space electromagnetic waves is that they have no dispersion, that is: 
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The consequence is that one dimensional free space waves have the general form:   
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Another way of saying the same thing is that you decompose by Fourier transform any 
waveform. All the different frequency components propagate with the same speed so 
any old shape of E (and consequently B) doesn’t change as it races along at the speed of 
light. 
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Now waveguides. 
 
There are lots of kinds of waveguides, and lots of ways of analyzing them (circuit 
models for example), but let’s just look at rectangular waveguide. It turns out that 
the general properties of the hollow, uniform waveguides are independent of the 
cross section geometry. 
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We’re not going to solve the waveguide in all generality but we already know that 
there are solutions which look like this: 
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The solution is of the form (we can solve this because we already know the answer): 
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An important feature of the wavenumber in a waveguide is existence of a cutoff 
frequency: 

when this is less than this (which gives the cutoff frequency) 
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We can now rewrite all this in terms of f and  and put in a term for the cutoff 
frequency rather than the specific case we just solved. 

NOTE! This term is ≥ 1, so the wavelength in a 
uniform waveguide is always bigger than in free 
space.  
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We now address the phase velocity 
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Going back to wavelength the phase velocity is given by 
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Since the wavelength in a uniform waveguide is always bigger than in free space, the 
phase velocity is always faster than c. 
 
This is very important to understand because it is one of the two main issues rf 
structures address. Electron beams mostly travel with c, plus in injectors even less not 
to mention heavier particles like protons. How do you get the phase velocity in a 
guided wave down to c? 



Wave vector    :  
the direction of     is the direction of 
propagation, 
the length of     is the phase shift per 
unit length. 
    behaves like a vector. 

Homogeneous plane wave 

Fifth International Accelerator School for Linear Colliders, Villars 2010 
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Thanks to Erk Jensen for the next four slides. 



The components of     are related to the wavelength in the direction of that 

component as                etc. , to the phase velocity as 

Wave length, phase velocity 

Fifth International Accelerator School for Linear Colliders, Villars 2010 
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Superposition of 2 homogeneous plane waves 

Fifth International Accelerator School for Linear Colliders, Villars 2010 
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Metallic walls may be inserted where 

without perturbing the fields.  

Note the standing wave in x-direction! 
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Rectangular waveguide 

Fifth International Accelerator School for Linear Colliders, Villars 2010 

Fundamental (TE10 or H10) mode 
in a standard rectangular waveguide. 
 

Example: “S-band” : 2.6 GHz ... 3.95 GHz, 
Waveguide type WR284 (2.84” wide), 
dimensions: 72.14 mm x 34.04 mm. 
Operated at f = 3 GHz. 
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Horizontal green line: waveguide k is 
0.75 of free space k at 11.994 GHz  

Wavelength in another picture – the dispersion 
curve. 
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Case 1: Wavelength is equal to free space wavelength, 
phase velocity equal to c. 

Beam (blue dot) travels 
with the speed of light. 
z(t)=ct 

A first view of travelling wave acceleration 
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Case 2: Wavelength is equal to free space 
wavelengthx4/3, phase velocity equal to 4/3xc. 

Beam (blue dot) travels 
with the speed of light. 
x(t)=ct 

But in a uniform waveguide: 
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Waveguide dispersion 

Fifth International Accelerator School for Linear Colliders, Villars 2010 

What happens with different waveguide 
dimensions (different width a)? 

c



zk

1: 
a = 52 mm, 
f/fc = 1.04 

cutoff 

2

1
2

















 c

g

z
c

k

c
k




a

c
fc

2


f = 3 GHz 

2: 
a = 72.14 mm, 
 f/fc = 1.44 

3: 
a = 144.3 mm, 
 f/fc = 2.88 1 

2 

3 

Erk Jensen 



27 

Now before we go to solving how to slow down a travelling wave’s phase velocity, 
we will take another perspective on acceleration:  
 
Standing wave cavities. 
 
Here again, I won’t describe how to solve of the fields. We will instead look at the 
general features of the specific solution. 
 
The key thing if for you is to understand the general features. 
 
Of course in the long run, understanding how to get the solutions helps you better 
understand what phase velocity and all that stuff really mean. 
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Fields inside a pillbox cavity 

Electric field 

Magnetic field 
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Electric field in the TM1,1,0 mode of a pillbox cavity 
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We are now going to take a big step. We are going to consider to what happens to a 
beam crossing a cavity. 
 
The equation for the force on a charge is: 

 BvΕF  q

For now we only consider that charges are being accelerated or decelerated, gaining or 
losing energy, by the rf field. That means we only need to consider electric fields in the 
direction of motion.  
 
This we get in the TM1,1,0 mode we just saw with particles zipping along the axis of 
rotation. 
 
In fact this hints at a profound point. Free space waves are transverse. You can’t give 
energy to a beam in the direction of power flow. That’s why laser aren’t used all over the 
place to accelerate particles. You need charges close by (in metals, dielectrics or 
plasmas) to turn the electric field in the direction of power flow. Those charges are going 
to cause all sorts of problems: losses, breakdown etc. 
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Beam crossing TM1,1,0 mode pillbox cavity 

Beam (blue dot) travels 
with the speed of light. 
x(t)=ct 

Electric field (red line) 
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Fields change while the beam flies through the cavity. The beam not seeing the 
peak electric field all the way through gives the transit time factor. 
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Philosophy: we need the metal to turn our fields in the right direction but we can only use 
the part of the fields travelling with our, speed of light, particle. That’s the free-space part of 
the solution in our cavity… 
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Transit time factor 2 
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Now let’s get practical. A beam needs to enter and exit a cavity. Accelerating 
cavities have beam pipes. 

normalized for stored energy 
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Acceleration by standing wave cavity is great but a single cell isn’t very long and you need 
to feed each one with power if you want to use more than one. 
 
There are ways of coupling multiple cells together but things get really tricky with tuning 
when you get past a few cells. 
 
A more common type of structure in linacs, and this is especially true with high energy 
electron linacs like linear colliders, is a travelling wave accelerating structure. 
 
Power propagates along travelling wave structures in the same direction that the beam 
passes. 
 
But from what we already learned - the key point is how to slow the phase velocity down 
to the speed of light.  
 
This will be done with periodic structures. 
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Inside this… 

CLIC prototype accelerating structure  

Oleksiy Kononenko 

Arno Candel 

…is this. 
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Remember our uniform waveguide fields: 

In periodic loaded waveguide we don’t have such a simple z dependence anymore, 
 
except that we know one geometrical period later has to have exactly the same solution 
(except for some phase advance) because the geometry is exactly the same. 
 
This is in exact analogy to our uniform waveguide were every position z has exactly the 
same solution (except for some phase advance) because the geometry is exactly the 
same. 
 
In its rigorous form, this is know as Floquet’s theorem. 
 
The consequence of this is that some frequencies can propagate through the periodic 
structure and some can’t. 
 
The uniform waveguide dispersion curve is bent up into pass and stop bands. 
 
BUT this bending gives us crossings with the speed of light line, to give us the synchronism 
with speed of light beams! 
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A very useful way to look a the structure of propagation characteristics of a periodic 
structure is the Brillouin diagram. We plot frequency against phase advance per period (or 
cell) which is kL. 
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2/3 travelling wave in disk loaded waveguide 

Phase propagation direction 
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Two different aperture geometries. The same phase velocity for the 2/3 mode but 
different group velocity. This is given by the slope of the dispersion curve. 
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Beam goes through 
structure and is 
accelerated.  

rf power is fed into structure 

a little bit of power comes out 

Now we have all the elements to understand the basic principles of a CLIC accelerating 
structure. 



Resonant cavity impedance as a function of frequency 

This is a diversion into a ‘standard’ rf problem and utilises a circuit model, 
which is often used in analysing rf problems. 
 
We’re not going to become experts here in circuit models, but studying the 
resonant cavity in a bit more detail will help us understand some of the 
accelerator concepts better. 
 
The answer provides you with a very practical tool in case you find yourself 
in the lab.  
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At resonance energy stored in the inductor and 
capacitor is the same so: 

You get the Q from stored energy in the system 
divided by the energy lost per cycle and it works 
out to: 
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ideal transformer with coupling 𝛽 
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