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RF Cavity

* Mode transformer (TEM—TM)
* Impedance transformer (Low Z—High 2Z)

« Space enclosed by conducting walls that can sustain an
Infinite number of resonant electromagnetic modes

« Shape Is selected so that a particular mode can
efficiently transfer its energy to a charged particle

* An isolated mode can be modeled by an LRC circuit
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RF Cavity

Lorentz force F =q(E +V xB)

An accelerating cavity needs to provide an electric field E
longitudinal with the velocity of the particle

Magnetic fields provide deflection but no acceleration

DC electric fields can provide energies of only a few MeV

Higher energies can be obtained only by transfer of energy from
traveling waves —resonant circuits

Transfer of energy from a wave to a particle is efficient only is
both propagate at the same velocity
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Equivalent Circuit for an rf Cavity

- : : : | 50000
Simple LC circuit representing an W _
accelerating resonator e lmoed 1-C v

repesenting an accelerating

-
q

-

Metamorphosis of the LC circuit s
into an accelerating cavity e; W v I by
o PI™ = =l BE=
® ® ik M
a) b) c)

d) e)

Metamorphosis of the L-C circuit of Fig.1 into an accelerating cavity (after R.P.Feynman33)).
Fig. Sd shows the cylindrical “pillbox cavity” and Fig. Se a slightly modified pillb

with beam holes (typical 8 between 0.5 and 1.0). Fig. Sc resembles a low 8 version of the
Chain of weakly coupled pillbox Py s pai

cavities representing an
accelerating module

I—|<—L |_ i

—_—

Chain of coupled pendula as its LT 3
mechanical analogue

Chain of weakly-coupled pillbox

i 4

NOAN

Chain of coupled pendula as a
cavities representing an accele~

mechanical analogue to Fig. 6a
rating module
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Electromagnetic Modes

Electromagnetic modes satisfy Maxwell equations
V| E
kvz_i@_\{ }:o
c’ ot’

With the boundary conditions (assuming the walls are
made of a material of low surface resistance)

no tangential electric field ixE=0

no normal magnetic field feH =0
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Electromagnetic Modes

Assume everything ~p et
)| E
(VZ + 0)_2) { q} —0
C H

For a given cavity geometry, Maxwell equations have an infinite
number of solutions with a sinusoidal time dependence

For efficient acceleration, choose a cavity geometry and a mode
where:

Electric field is along particle trajectory
Magnetic field is O along particle trajectory

Velocity of the electromagnetic field is matched to particle velocity
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Accelerating Field (gradient)

Voltage gained by a particle divided by a reference length
E= %j E, (z)cos(wz/ pc)dz

. . . NA
For velocity-of-light particles L=—o

2

For less-than-velocity-of-light cavities, there is no
universally adopted definition of the reference length
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Design Considerations

H . .. :

s minimum critical field

Eacc
Es max . . .

' minimum field emission

Eacc
<H?> . .

- minimum shunt impedance, current losses

Eacc

<EZ> . . .
> minimum dielectric losses

Eacc

U minimum control of microphonics

2 : .
E... maximum voltage drop for high charge per bunch
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Energy Content

Energy density in electromagnetic field:

u= %(EOEZ + 1, H?)

Because of the sinusoidal time dependence and the 90°
phase shift, he energy oscillates back and forth between
the electric and magnetic field

Total energy content in the cavity:

_ & 2 M 2
U—?OdeV|E| _7°deV|H|
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Power Dissipation

Power dissipation per unit area

R
‘Hu‘z =—-|H,

dP  p,wo S
2

da 4

‘2

Total power dissipation in the cavity walls

R
szida‘Hnr
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Quality Factor

Quality Factor Q,:

o Energy stored in cavity _oU
" Energy dissipated in cavity walls per radian P,
@y
=W,T, =
0%0 Aa)o
2
U, J-v av |H|
(:?O o R 2
: jda‘H”‘
A
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Geometrical Factor

Geometrical Factor QRs (Q)
Product of the Quality Factor and the surface resistance
Independent of size and material
Depends only on shape of cavity and electromagnetic mode

2 5 5
6 -0 —op WV IH _Zﬂﬁljvdww 2y [ AVIH

jda‘Hn‘z : £ A jda‘H“‘Z A jda‘Hur
A A A

n ~377Q Impedance of vacuum
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Shunt Impedance, R/Q

2
Shunt impedance Rg: R, = Ve in O
I:)dis,s
V. = accelerating voltage
V2
Note: Sometimes the shunt impedance is defined as C
or quoted as impedance per unit length (ohm/m) 2Pliss

R/Q (in Q)

R_V2 P _E2L2
Q PoU U w
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Q — Geometrical Factor (Q R.)

Energy content B wg = O
Energy disspated during one radian P Aw
Rough estimate (factor of 2) for fundamental mode
3
wZZﬂC: 2r 1 U:&JszVZ&EHSﬂ
A g1, 2L 2 2 2 6

p_1 R, [HdA = 1r Lhz
2 2 ° 2

QR, ~% /ﬁ = 2000
€0

G =QR, is size (frequency) and material independent.
It depends only on the mode geometry

It is independent of number of cells

For superconducting elliptical cavities QR, ~ 275Q
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Shunt Impedance (R,,), R.,, R., R/Q

V? E2 L
Ra =5 =1 1
SRHZr 22

2 2

In practice for elliptical cavities
R,R, = 33,000 (Qz) per cell
R, /Q=100Q per cell

R, R, and R, /Q
Independent of size (frequency) and material
Depends on mode geometry
Proportional to number of cells
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Power Dissipated per Unit Length or Unit Area

P 1 E°R,
L ™ QR @
Q
For normal conductors R, oc w2
1
P v o2
L
1
P e w2
A
For superconductors R, oc o’
P
N oC ')
L
E ocC a)z
A
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External Coupling

 Consider a cavity connected
to an rf source

A coaxial cable carries power
from an rf source to the cavity

 The strength of the input
coupler is adjusted by
changing the penetration of
the center conductor

« Thereis afixed output
coupler, the transmitted
power probe, which picks up
power transmitted through
the cavity. This is usually
very weakly coupled

J)effe?son Lab
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TRANSMITTED
POWER PROBE

INPUT
COUPLER

_______

: TMO‘!O
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Cavity with External Coupling

Consider the rf cavity after the rf is turned off.
Stored energy U satisfies the equation: =

E —  Ttot
Total power being lost, P Is: P =P_+P+P

P. is the power leaking back out the input coupler.
P, Is the power coming out the transmitted power coupler.
Typically P, is very small = P, # Py + P,

U
Recall Q, = “
I:)diss
Similarly define a “loaded” quality factor Q.:  Q, = C’;JU
tot
ot
Now AU __ ol _ =Use ™
dt Q,
. energy in the cavity decays exponentially with time constant: 7, = Q
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Cavity with External Coupling

Equation i ZM
w,U w,U

suggests that we can assign a quality factor to each loss mechanism,
such that

1_1,1

Q. Q Q.

w,U

where, by definition, Q. = 5

e

Typical values for CEBAF 7-cell cavities: Q,=1x10%°, Q. ~Q,=2x10"
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Cavity with External Coupling

» Define “coupling parameter”: [ = &
Qe
1 1+
therefore :( P)
QL Q&
. P,
Bis equal to: B = 5

It tells us how strongly the couplers interact with the cavity.
Large B implies that the power leaking out of the coupler is
large compared to the power dissipated in the cavity walls.
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Several Loss Mechanisms

P=>P  -walllosses

-power absorbed by beam
-coupling to outside world

Associate Q will each loss mechanism
U

Q=05 (index O is reserved for wall losses)
Loaded Q: Q,
1 ZP Z—
Q
. - Q P
Coupling coefficient: f=—2=-"
Q K
— 0
% 1+> B
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1300 MHz 9-cell
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Pill Box Cavity

Hollow right cylindrical enclosure
TM,,0 mode

Operated in the TMy,, mode H, =0

FE, L, _10F, |, 240 S

Z

-+ —
o°r r or c® o4 ’ R

E,(r,z,t)=EJ, (2.405%) g0

H

0
1“
E ry
H(F2,t) = —i 22 ] (2.405—je-'%t o (T et
(r2) =20, 24050
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Modes in Pill Box Cavity

* TMogp
— Electric field is purely longitudinal

— Electric and magnetic fields have no angular
dependence

— Frequency depends only on radius, independent on
length

° TMOmn

— Monopoles modes that can couple to the beam and
exchange energy

* TMlmn

— Dipole modes that can deflect the beam
« TE modes

— No longitudinal E field

— Cannot couple to the beam

W
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TM Modes in a Pill Box Cavity

E,  nzR [ r) . [ z)
= —J/| X,, = |sin| nz—|cosle
R L

E_0 X L
E 2
2 :InfR Jl[ Xim r)sm(nn jsmlgo
E, X, rL R L
5 el
—Z = J| X, = |sIn| nz— |cosle
. R L
H, | R’ ( r) ( j
= —lwe ——J,| X, = |cos| nz— |sinlgp
E, Xjy T R L
H, . R _, r Z
— =—lwe—J/| X, = | cos| nzr — |cosle
EE() )(In1 R L
H
Z 0
EO
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X, 1S the mth root of J, (x)

W

OLb
[DMINION

UNIVERSITY



TM,,0 Mode In a Pill Box Cavity

E,=E, =0 E =E,J, (xm %j

H =H, =0 H¢=—ia)gEoiJl(xmL)
Xo1 R

O = xm% Xoy = 2.405

R=201 ;03834

27
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J)effe?son Lab

TM,,0 Mode In a Pill Box Cavity

Energy content

U =¢gE, %Jf(Xm)LRZ

Power dissipation

R
P=E’—=7J7(x,)(R+L)R

2

Geometrical factor
Xo; L

2 (R+1L)

G=ng

Page 27

X,, = 2.40483
J.(X,,) = 0.51915
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TMO010 Mode in a Pill Box Cavity

Energy Gain
AW = E, isinﬁ—L
T A

Gradient
AW 2 . 7L

E.=——==E,—SIn—
A2 T A

Shunt impedance

n’ 1 A’ in2 (ﬂ'Lj

Ry, = 0 SIn® | —
R, 7737 (X,;) R(R+L) A
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Real Cavities

Beam tubes reduce the electric field on axis
Gradient decreases
Peak fields increase

R/Q decreases
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Real Cavities

TMO010

f= 1323 MHz
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Single Cell Cavities

Electric field high at iris

Beam tube Cell Beam tube

OO
A ¥
O

Symmetry axis \_/

— > w Electric field

Electric Fleld

s ® & > ]
Iris > Iris
Ts '
Magnetic field X A . : A . . )
e == Y ; 8.0

Equator
\ Magnetic field high at equator
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Coupling between cells

Symmetry plane for
the H field

The normalized
difference between these
frequencies is a measure
of the energy flow via the

coupling region

Symmetry plane for K — @, — 0,
the E field cc
which is an additional W, + 0

solution 9
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Multi-Cell Cavities

009 099 F000— F000— C

Cp__ G . G —_ 0, G __C, G __ K = C_ Cb — Ck /2

2

zzim

_ —m=1+2k(1—cos—j
Mode frequencies: 2 n

@ —® 7\ k(x)°
nnd :k(l—cos—j :—[—j
@, n 2\n

. m 2]-1
Voltages in cells: Vj =SIn| zm
2N
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Pass-Band Modes Freguencies

9-cell cavity

w, (L+4k)"?

W

OL
Jefferdon Lab page 34 OMINION
2 UNIVERSITY



Cell Excitations in Pass-Band Modes

9 Cell, Mode 1 9 Cell, Mode 4 9 Cell, Mode 7

9 Cell, Mode 2 9 Cell, Mode 5 9 Cell, Mode 8

9 Cell, Mode 3 9 Cell, Mode 6 9 Cell, Mode 9

W
.geft;?s'on Lab Page 35 D)Ol\ifNION

UNIVERSITY



Some Real Geometries (A/4)
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A4 Resonant Lines
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A/l2 Resonant Lines

wir
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A2 Resonant Lines — Single-Spoke

Beam port

wir
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A2 Resonant Lines — Double and Triple-Spoke
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A2 Resonant Lines — Multi-Spoke
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