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RF Cavity 

• Mode transformer (TEM→TM) 

 

• Impedance transformer (Low Z→High Z) 

 

• Space enclosed by conducting walls that can sustain an 

infinite number of resonant electromagnetic modes 

 

• Shape is selected so that a particular mode can 

efficiently transfer its energy to a charged particle 

 

• An isolated mode can be modeled by an LRC circuit 
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RF Cavity 

Lorentz force 

 

An accelerating cavity needs to provide an electric field E 

longitudinal with the velocity of the particle 

Magnetic fields provide deflection but no acceleration 

 

DC electric fields can provide energies of only a few MeV 

Higher energies can be obtained only by transfer of energy from 

traveling waves →resonant circuits 

Transfer of energy from a wave to a particle is efficient only is 

both propagate at the same velocity 

( )F q E v B= + ´
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Equivalent Circuit for an rf Cavity 
 

Simple LC circuit representing an 
accelerating resonator 

 

 

 

 

Metamorphosis of the LC circuit 
into an accelerating cavity 

 

 

 

 

Chain of weakly coupled pillbox  

cavities representing an 
accelerating module 

      

Chain of coupled pendula as its 
mechanical analogue  
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Electromagnetic Modes 

Electromagnetic modes satisfy Maxwell equations 

 

 

With the boundary conditions (assuming the walls are 

made of a material of low surface resistance) 

 no tangential electric field 

 no normal magnetic field 
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Electromagnetic Modes 

Assume everything  

 

 

 

For a given cavity geometry, Maxwell equations have an infinite 

number of solutions with a sinusoidal time dependence 

For efficient acceleration, choose a cavity geometry and a mode 

where: 

Electric field is along particle trajectory 

Magnetic field is 0 along particle trajectory 

Velocity of the electromagnetic field is matched to particle velocity 
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Accelerating Field (gradient) 

Voltage gained by a particle divided by a reference length 

 

 

For velocity-of-light particles 

 

For less-than-velocity-of-light cavities, there is no 

universally adopted definition of the reference length 
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Design Considerations  
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Energy Content 

Energy density in electromagnetic field: 

 

 

Because of the sinusoidal time dependence and the 90º 

phase shift, he energy oscillates back and forth between 

the electric and magnetic field 

Total energy content in the cavity: 
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Power Dissipation 

Power dissipation per unit area 

 

 

 

Total power dissipation in the cavity walls 
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Quality Factor 

Quality Factor Q0:  
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Geometrical Factor 

Geometrical Factor QRs (Ω) 

 Product of the Quality Factor and the surface resistance 

 Independent of size and material 

 Depends only on shape of cavity and electromagnetic mode 
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Shunt Impedance, R/Q 

Shunt impedance Rsh:  

         

 Vc = accelerating voltage 

 

 Note: Sometimes the shunt impedance is defined as       

 or quoted as impedance per unit length (ohm/m) 

 

 

R/Q (in Ω) 
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Q – Geometrical Factor (Q Rs)  
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Shunt Impedance (Rsh), Rsh Rs, R/Q  
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Power Dissipated per Unit Length or Unit Area  
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External Coupling 

• Consider a cavity connected 
to an rf source 

 

• A coaxial cable carries power 
from an rf source to the cavity 

 

• The strength of the input 
coupler is adjusted by 
changing the penetration of 
the center conductor 

 

• There is a fixed output 
coupler, the transmitted 
power probe, which picks up 
power transmitted through 
the cavity.  This is usually 
very weakly coupled 
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Cavity with External Coupling 

Consider the rf cavity after the rf is turned off. 
Stored energy U satisfies the equation: 
 
Total power being lost, Ptot, is:  
 
Pe is the power leaking back out the input coupler.   
Pt is the power coming out the transmitted power coupler.  
 Typically Pt is very small  Ptot  Pdiss + Pe  
 
Recall  
 
Similarly define a “loaded” quality factor QL:  
 
Now 
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Cavity with External Coupling 

 

 

 

 

Equation  

 

 

suggests that we can assign a quality factor to each loss mechanism, 
such that  

 

 

 

where, by definition,  

 

Typical values for CEBAF 7-cell cavities: Q0=1x1010, Qe QL=2x107. 
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Cavity with External Coupling 

• Define “coupling parameter”: 

 

 

 

     therefore 

                           

 

 

  is equal to: 

 

 

• It tells us how strongly the couplers interact with the cavity. 

Large  implies that the power leaking out of the coupler is 

large compared to the power dissipated in the cavity walls.   
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Several Loss Mechanisms  
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1300 MHz 9-cell 
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Pill Box Cavity 

Hollow right cylindrical enclosure 

Operated in the TM010 mode 
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Modes in Pill Box Cavity 

• TM010  

– Electric field is purely longitudinal 

– Electric and magnetic fields have no angular 

dependence 

– Frequency depends only on radius, independent on 

length 

• TM0mn 

– Monopoles modes that can couple to the beam and 

exchange energy 

• TM1mn 

– Dipole modes that can deflect the beam 

• TE modes 

– No longitudinal E field 

– Cannot couple to the beam 
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TM Modes in a Pill Box Cavity 
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TM010 Mode in a Pill Box Cavity 
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TM010 Mode in a Pill Box Cavity 

Energy content 

 

 

Power dissipation 

 

 

Geometrical factor 
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TM010 Mode in a Pill Box Cavity 

Energy Gain 

 

 

Gradient 

 

 

Shunt impedance 
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Real Cavities 

Beam tubes reduce the electric field on axis 

 Gradient decreases 

 Peak fields increase 

 R/Q decreases 
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Real Cavities 
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Single Cell Cavities 

Electric field high at iris 

Magnetic field high at equator 
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Coupling between cells 
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Symmetry plane for 

the H field 

Symmetry plane for 

the E field 

which is an additional 
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Multi-Cell Cavities 

Mode frequencies: 

 

 

 

 

Voltages in cells: 

2

2

0

2

1

0

1 2 1 cos

1 cos
2

m

n n

m
k

n

k
k

n n

w p

w

w w p p

w
-

æ ö
= + -ç ÷è ø

- æ ö æ ö
-ç ÷ ç ÷è ø è ø

2 1
sin

2

m

j

j
V m

n
p

-æ ö
= ç ÷è ø

/ 2b k

k

C
k C C

C
= =



Page 34 

Pass-Band Modes Frequencies 

-1

0 1 2 3 4 5 6 7 8 9

9-cell cavity 

0w

1/2

0 (1 4 )kw +



Page 35 

Cell Excitations in Pass-Band Modes 

9 Cell, Mode 1
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Some Real Geometries (l/4)  
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l/4 Resonant Lines 
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l/2 Resonant Lines 
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l/2 Resonant Lines – Single-Spoke 
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l/2 Resonant Lines – Double and Triple-Spoke 
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l/2 Resonant Lines – Multi-Spoke 


