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Storage Ring Basics 

Now we will begin our review of storage ring basics.  In particular, 

we will cover: 

– Ring Equations of Motion 

– Betatron Motion 

– Emittance 

– Transverse Coupling 

– Dispersion and Chromaticity 

– Momentum Compaction Factor 

– Radiation Damping and Equilibrium Beam Properties 
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Equations of Motion 

Particle motion in electromagnetic fields is governed by the 

Lorentz force: 

 

with the corresponding Hamiltonian: 

 

 

For circular machines, it is convenient to convert to a curvilinear 

coordinate system and change the independent variable from time 

to the location, s-position, around the ring.   

In order to do this we transform  

to the Frenet-Serret  

coordinate system. 

The local radius of  

curvature is denoted by r. 
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Equations of Motion 

With a suitable canonical transformation, we can re-write the 

Hamiltonian as: 

 

 
 

 

Using the relations 
 

and expanding to 2nd order in px and py yields: 

 

 

 

 

which is now periodic in s. 

 
   

1/2
2

222 2

2
1 x x y y s

x
m c p eA p eA eA

cr

  
        
    

H -e
H = -

2
2 2

2

E
E e p m c

c
    H  ,    

   
221

1
2

x x y y s

x x
p p eA p eA eA

p

r

r

               
H -



October 31, 2010 A3 Lectures:  Damping Rings - Part 1 6 

Equations of Motion 
Thus, in the absence of synchrotron motion, we can generate the equations of 

motion with: 

 

 

which yields: 

 

 

and 

 

 

 

Specific field configurations are applied in an accelerator to achieve the desired 

manipulation of the particle beams.  Thus, before going further, it is useful to 

look at the types of fields of interest via the multipole expansion of the 

transverse field components. 
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Magnetic Field Multipole Expansion 

Magnetic elements with 2-dimensional fields of the form 

 
 

can be expanded in a complex multipole expansion: 
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Multipole Moments 
Upright Fields 

Dipole: 

 

 

Quadrupole: 

 

 

Sextupole: 

 

 

 

Octupole: 

 

 

Skew Fields 

Dipole (q  90°): 
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Equations of Motion (Hill’s Equation) 

We next want to consider the equations of motion for a ring with 

only guide (dipole) and focusing (quadrupole) elements: 

 

 

Taking p=p0 and expanding the equations of motion to first order in 

x/r and y/r gives: 

 

 

 

 

where the upper/low signs are for a positively/negatively charged 

particle. 
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Solutions to Hill’s Equation 

Some introductory comments about the solutions to Hill’s 

equations: 

– The solutions to Hill’s equation describe the particle motion around a 

reference orbit, the closed orbit.  This motion is known as betatron 

motion.  We are generally interested in small amplitude motions around 

the closed orbit (as has already been assumed in the derivation of the 

preceding pages). 

– Accelerators are generally designed with discrete components which 

have locally uniform magnetic fields.  In other words, the focusing 

functions, K(s), can typically be represented in a piecewise constant 

manner.  This allows us to locally solve for the characteristics of the 

motion and implement the solution in terms of a transfer matrix.  For 

each segment for which we have a solution, we can then take a particle’s 

initial conditions at the entrance to the segment and transform it to the 

final conditions at the exit.  
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Solutions to Hill’s Equation 

Let’s begin by considering constant K=k: 

 

where x now represents either x or y. The 3 solutions are: 

 

 

 

 

 

For each of these cases, we can solve for initial conditions and 
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Transfer Matrices 

We can now re-write the solutions of the preceding page in 

transfer matrix form: 
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c.o. 

Transfer Matrices 
Examples: 

– Thin lens approximation: 

 

 

 

 

 

 

– Sector dipole (entrance and exit faces ┴ to closed orbit): 
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Transfer Matrices 

Transport through an interval s0 s2 can be written as the product 

of 2 transport matrices for the intervals s0 s1 and s1 s2: 

 

 

and the determinant of each transfer matrix is:   

 

Many rings are composed of repeated sets of identical magnetic 

elements.  In this case it is particularly straightforward to write the 
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Twiss Parameters 

The generalized one turn matrix can be written as: 

 

 
 

This is the most general form of the matrix.  a, b, and g are known 

as either the Courant-Snyder or Twiss parameters (note: they 

have nothing to do with the familiar relativistic parameters) and  

is the betatron phase advance.  The matrix J has the properties: 
 

 

 

The n-turn matrix can be expressed as:  

which leads to the stability requirement for betatron motion:  

cos sin sin
cos sin

sin cos sin

a b

g a

    
     

     
M I J

2 2, 1
a b

bg a
g a

 
      

  
J J I     

Identity matrix 

   cos sinn n n   M I J

 Trace 2cos 2  M



October 31, 2010 A3 Lectures:  Damping Rings - Part 1 16 

The Envelope Equations 

We will look for 2 independent solutions to Hill’s Equation of the 

form: 

 

Then w and y satisfy: 
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The Envelope Equations 

Application of the previous transfer matrix to a full turn and direct 

comparison with the Courant-Snyder form yields: 

 

 
 

the betatron envelope equation becomes 

 

 

and the transfer matrix in terms of the Twiss parameters can 

immediately be written as: 
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General Solution to Hill’s Equation 

The general solution to Hill’s equation can now be written as: 

 

 
 

We can now define the betatron tune for a ring as: 

 

 
 

If we make the coordinate transformation: 
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The Courant-Snyder Invariant 

With K real, Hill’s equation is conservative.  We can now take  

 

 

 

 

After some manipulation, we can combine these two equations to 

give: 
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Emittance 

The equation 

 

describes an ellipse with area . 

 

For an ensemble of particles, each  

following its own ellipse, we can  

define the moments of the beam as: 

  

 

 

 

The rms emittance of the beam is then 
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Coupling 
Up to this point, the equations of motion that we have considered 
have been independent in x and y.  An important issue for all 
accelerators, and particularly for damping rings which attempt to 
achieve a very small vertical emittance, is coupling between the 
two planes.  For the damping ring, we are primarily interested in 
the coupling that arises due to small rotations of the quadrupoles. 
This introduces a skew quadrupole component to the equations of 
motion.  

 

 

 

Another skew quadrupole term arises from “feed-down” when the 
closed orbit is displaced vertically in a sextupole magnet.  In this 
case the effective skew quadrupole moment is given by the 
product of the sextupole strength and the closed orbit offset 
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Coupling  

For uncoupled motion, we can convert the 2D (x,x′) and (y,y′) 

transfer matrices to 4D form for the vector (x,x′,y,y′): 

 

 

 

where we have arbitrarily chosen this case to be focusing in x.  
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Coupling and Emittance 

Later in this lecture series we will look in greater detail at the 

sources of vertical emittance for the damping rings.   

 

In the absence of coupling and ring errors, the vertical emittance of 

a ring is determined by the the radiation of photons and the fact 

that emitted photons are randomly radiated into a characteristic 

cone with half-angle q1/2~1/g.  This quantum limit to the vertical 

emittance is generally quite small and can be ignored for presently 

operating storage rings.   

 

Thus the presence of betatron coupling becomes one of the 

primary sources of vertical emittance in a storage ring.    
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Dispersion 

In our initial derivation of Hill’s equation, we assumed that the 

particles being guided had the design momentum, p0, thus ignoring 

longitudinal contributions to the motion.  We now want to address 

off-energy particles.  Thus we take the equation of motion: 

 

 

and expand to lowest order in               and          which yields: 

 

 

 

We have already obtained a homogenous solution, xb(s).  If we 

denote the particular solution as D(sd, the general solution is:  

2

0

2
1

yB px x
x

B p

r

r r r

 
     

 

0

p

p
d




 x K s x
d

r
  

x

r

   x x s D sb d 



October 31, 2010 A3 Lectures:  Damping Rings - Part 1 25 

Dispersion Function and Momentum Compaction 

The dispersion function satisfies: 
 

with the boundary conditions:  

 

The solution can be written as the sum of the solution to the 

homogenous equation and a particular solution: 

 

 

 

which can be expressed in a 3×3 matrix form as: 

 

( ) 1D K s D r  

       D s L D s D s L D s    ;  

 

 
 

 

 
2 1

2 1

2 1

D s D s d
s s

D s D s d

     
            

M

 

 
 

 

 
2 1

2 1

2 1

0 1
1 1

D s D s
s s d d

D s D s d
d

   
      

               
   

M
,     where   



October 31, 2010 A3 Lectures:  Damping Rings - Part 1 26 

Momentum Compaction 

We can now consider the difference in path length experienced by 

such an off-momentum particle as it traverses the ring.  The path 

length of an on-momentum particle is given by: 

 

For the off-momentum case, we then have: 

I1 is the first radiation integral. 

 

The momentum compaction factor, ac, is defined as: 
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The Synchrotron Radiation Integrals 

I1 is the first of 5 “radiation integrals” that we will study in this 

lecture.  These 5 integrals describe the key properties of a storage 

ring lattice including: 

– Momentum compaction 

– Average power radiated by a particle on each revolution 

– The radiation excitation and average energy spread of the beam 

– The damping partition numbers describing how radiation damping is 

distributed among longitudinal and transverse modes of oscillation 

– The natural emittance of the lattice 

 

In later sections of this lecture we will work through the key 

aspects of radiation damping in a storage ring 
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Chromaticity 

An off-momentum particle passing through a quadrupole will be 

under/over-focused for positive/negative momentum deviation.  

This is chromatic aberration.  Hill’s equation becomes: 

 

 

We will evaluate the chromaticity by first looking at the impact of 

local gradient errors on the particle beam dynamics. 
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Effect of a Gradient Error 

We consider a local perturbation of the focusing strength  

K = K0+K. The effect of K can be represented by including a 

thin lens transfer matrix in the one-turn matrix.  Thus we have 

  

 

and 

 

 

 

 

With 0, we can take the trace of the one-turn matrix to  

give: 
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Effect of a Gradient Error 

Using the relation:   

 

we can identify: 

 

Thus  we can write: 

 

and we see that the result of gradient errors is a shift in the 

betatron tune.  For a distributed set of errors, we then have: 

 

 

 

which is the result we need for evaluating chromatic aberrations.  

Note that the tune shift will be positive/negative for a 

focusing/defocusing quadrupole. 
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Chromaticity 

We can now write the betatron tune shift due to chromatic 

aberration as: 

 

 

The chromaticity is defined as the change in tune with respect to 

the momentum deviation: 

 

 

Because the focusing is weaker for a higher momentum particle, 

the natural chromaticity due to quadrupoles is always negative.  

This can be a source of instabilities in an accelerator.  However, 

the fact that a momentum deviation results in a change in 

trajectory (the dispersion) as well as the change in focusing 

strength, provides a route to mitigate this difficulty. 
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Sextupoles 

Recall that the magnetic field in a sextupole can be written as: 

 

 

Using the orbit of an off-momentum particle 

we obtain 

 

and 

 

where the first terms in each expression are a quadrupole feed-

down term for the off-momentum particle. Thus the sextupoles can 

be used to compensate the chromatic error.  The change in tune 

due to the sextupole is 
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Summary 

During the last portion of today’s lecture, we have begun our walk 

through the basics of storage/damping ring physics.   

 

We will pick up this discussion tomorrow with the effect known as 

radiation damping which is central to the operation of all lepton 

collider, storage and damping rings.   

 

Once we have completed that discussion we will look in greater 

detail at the lattice choices that have been made for the damping 

rings and how these lattices are presently being forced to evolve. 

 

In the first part of today’s lecture we had an overview of the key 

design issues impacting the damping ring lattice.  The homework 

problems will provide an opportunity to become more familiar with 

some of these issues. 
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