
The Calicoes project
Calice OnlinE System

High Performance Middleware
For

the Calice DAQ System

Frédéric Magniette, LLR
ANR-2010-BLANC-0429-01

2

The Needs

● Acquisition Chain : dev from scratch
● Control-Command Chain (Liblda)
● Human-Machine interfaces

● For DAQ debugging
● For data acquisition

● Properties
● Calice compatible (DIF-LDA-ethernet-Multiroc)
● Highly reliable
● Strong evolutivity (developpement phase)

3

Design Concepts

● Internal Modularity
● Functional blocks with easy communication

channels (on the Unix model)
● Every block is making few but making it fast

and good
● Easy evolutivity

● Parallelism
● Massively multi-threads approach
● Pipelined treatments
● Low-latency code (no barrier)

● External Genericity
● Connected to the outside with open formats

(xml, tcp sockets)

4

5

Low level Transfer

● Standard Ethernet driver (e1000)
● Low-level socket (SOCK_RAW)
● Limited in rate by the SOCK_RAW

implementation
● Projects to speed up: 3 alternatives

● Migrating DAQ to kernel compatible code (UDP)
● Specific kernel driver for DMA transfer of actual

ethernet format
● Specific ethernet adapter (ODR?)

6

LDA/GCC/DIF Uncap

● One of the two specific parts of the system
(dependant of the DIF Firmware version)

● Very basic : uncap, DIF tagging
● Projects

● Control improvement : integrity control (CRC),
packet loss control and measurement, reordering

● Implementation of local-id for multi-LDA support

7

The distribution bus

● Split data into beams (by dif)
● Offer the maximum flexibility in data treatment

● Offline through files
● Remote online through sockets
● High performance online through Shared Memory

● Pipelined treatments for maximizing the flow
rate

8

Signal Uncap

● The second specific block of the system
(dependant on the roc chip version)

● Actually adapted for skiroc, can be ported easily
to spiroc

● Uncaps the skiroc data to produce isolated
physical events

● Computes real-time statistics

9

Online Event building
● Not implemented now
● Basic idea : change the multiplexing from location to

time
● Massively multi-thread for handling the data rate
● Project

● defining a good pivot format (as it exists in DH-CAL)
● Interfacing Marlin processor with uncap threads through

TCP sockets

10

The Control-Command Chain
● SI-W ECAL actual hardware

● All this stuff is controled by specific little drivers (python and C), shell
scripts and the libLDA

● All accessible through a command module via a TCP socket with xml
commands

Impossible d’afficher l’image.

11

Local Supervisor

● Local supervisor /
monitor

● Allows users to send
commands and read
variables through the
variable and command
modules

● Generic design based
on Gtk3/Xml
description files (for
high flexibility)

12

Pycaldaq
● Embedded Python scripts to pilot the whole

detector
● Program or interractive sessions

import caldaq

def acq_run():
 caldaq.start_acq()
 caldaq.start_spill()
 caldaq.start_trigger()
 time.sleep(15)
 caldaq.stop_trigger()
 caldaq.stop_spill()
 caldaq.stop_acq()

caldaq.stop_acq()
caldaq.stop_spill()
caldaq.stop_acq()
caldaq.flush_files("trash")
for chan in range(0,64):
 caldaq.system("hack_config/set_trigchan config/calib_base.txt 4 \
 %d config/calib/calib_chan%d.txt" % (chan,chan))
 for trig in range(150,401):
 caldaq.system("hack_config/set_gtrigger config/calib/calib_chan%d.txt 4 \
 %d config/calib/calib_chan%d_trig%d.txt" % (chan,tri
 caldaq.send_config("config/calib/calib_chan%d_trig%d.txt" % (chan,trig))
 acq_run()
 caldaq.flush_files("calib_chan%d_trig%d" % (chan,trig))

13

The Framework connection

● Connection to XDAQ (or any other framework
Doocs, Tango) through the TCP/XML command
module

● The framework can be interfaced at any level
through a generic device server configured by
an xml command file

● Symmetrically, the framework can also provides
devices to integrate in the control-command
scheme via a specific command module

14

Statistics GUI

● Display_stats : a tool for displaying the
calibration statistics, online or offline

15

Hitcam

●Online and offline visualisation of hits (internal trigge
●Plugged via tcp socket to the acquisition daemon
●Adjustable gain
●Video generation
●Allows to proceed to :
●beam spotting
●online visual data control
●beam supervision

16

Results
● Good data rate : perfect for 10 Hz Spill
● Very good reliability

● 15 days of beamtest at DESY without bugs
● 3 weeks of calibration without a problem (20480 configurations

loaded, 122880 data files)
● Easy to use

● Multiples graphical interfaces
● Programming interface

● Good evolutivity
● Any block can be improved and modified easily by anybody

(especially python command modules)
● Easy to adapt to another setup : AH-Cal collaboration

17

Perspectives

● Increasing the flow rate by specific soft or hard
modification

● Migrating the control-command to unified Tcp/Xml
system

● Additionnal online monitoring (data quality, calibration...)
● Aggregating the signal events in an event-builder
● Integrating the system in the XDAQ framework
● Handling global configuration files through the unified

control-command system

18

Thank you for your attention, any
questions ?

	The Calicoes project�Calice OnlinE System
	The Needs
	Design Concepts
	Diapositive numéro 4
	Low level Transfer
	LDA/GCC/DIF Uncap
	The distribution bus
	Signal Uncap
	Online Event building
	The Control-Command Chain
	Local Supervisor
	Pycaldaq
	The Framework connection
	Statistics GUI
	Hitcam
	Results
	Perspectives
	Thank you for your attention, any questions ?

