New CCC for the ECAL testbeam at DESY July 2012

André Welker Bruno Bauß, Volker Büscher, Reinhold Degele, Lucia Masetti, Uli Schäfer, Rouven Spreckels, Stefan Tapprogge, Rainer Wanke

> CALICE Collaboration Meeting Cambridge, Sept. 18, 2012

JOHANNES GUTENBERG UNIVERSITÄT MAINZ

Readout chain

General info:

Readout chain

General info:

New Clock and Control Card (CCC) consists of two separated parts:

New Clock and Control Card (CCC) consists of two separated parts:

1. FPGA-controlled CCC board:

able to communicate with external clock & trigger logic.

New Clock and Control Card (CCC) consists of two separated parts:

1. FPGA-controlled CCC board:

able to communicate with external clock & trigger logic.

2. Fan-out board:

with no programmable logic (only logic for BUSY signal).

Advantages:

- 1. New configuration interface via USB instead of setting jumpers
 - to set the four different running modes

Advantages:

- 1. New configuration interface via USB instead of setting jumpers
 - to set the four different running modes
- 2. Very high stability

Advantages:

- 1. New configuration interface via USB instead of setting jumpers
 - to set the four different running modes
- 2. Very high stability
- 3. Many feedback commands and status commands

Four main modes and 13 configuration commands:

Four main modes and 13 configuration commands:

Four main modes and 13 configuration commands:

Four main modes and 13 configuration commands:

Four main modes and 13 configuration commands:

Four main modes and 13 configuration commands:

Four main modes and 13 configuration commands:

(e.g. status, manual trigger, hold trigger, pass trigger, rising edge, reset)

Mezzanine on an Kintex 7 Evaluation-Board:

CCC mezzanine from Mainz:

Mezzanine on an Kintex 7 Evaluation-Board:

CCC mezzanine from Mainz:

CCC mezzanine from Mainz:

Mezzanine on an Kintex 7 Evaluation-Board:

CCC mezzanine from Mainz:

CCC at the testbeam (front):

CCC at the testbeam (top):

Mezzanine on an Kintex 7 Evaluation-Board:

CCC mezzanine from Mainz:

CCC at the testbeam (front):

CCC at the testbeam (top):

Mezzanine on an Kintex 7 Evaluation-Board:

CCC mezzanine from Mainz:

CCC at the testbeam (front):

CCC at the testbeam (top):

Mezzanine on an Kintex 7 Evaluation-Board:

CCC mezzanine from Mainz:

CCC at the testbeam (front):

CCC at the testbeam (top):

6U-VME Fan-out board:

6U-VME Fan-out board:

1. Fan-out board from Mainz:

6U-VME Fan-out board:

1. Fan-out board from Mainz:

Fan-out board at the testbeam:

Zync processor controlled via Ethernet.

Zync processor controlled via Ethernet.

1. The idea is to solve everything via Ethernet similar protocol.

Zync processor controlled via Ethernet.

- 1. The idea is to solve everything via Ethernet similar protocol.
- 2. Easier implementation.

Zync processor controlled via Ethernet.

- 1. The idea is to solve everything via Ethernet similar protocol.
- 2. Easier implementation.

To be decided:

- Where would we install the CCC?
 - in a crate, so that we design it in the 6U-VME format?