

Comparison of Iron and Tungsten Testbeam data

Status Report

Clemens Günter

CALICE Collaboration meeting, 16.9.12

Motivation and overview

Motivation:

- Compare pion showers for iron (FNAL 2008 & 2009) and tungsten (CERN 2010) data for energies from 2-10 GeV (overlap of both testbeams)
- Investigate and understand the differences between iron and tungsten absorber (tungsten absorber proposed for CLIC)

Overview:

- Testbeam setups
- Event selection
- Results for this event selection.
- Shower decomposition in simulations

Reminder: AHCAL technology

- Sandwich hadron calorimeter
- Active layers: scintillator with SiPM readout
- Two different absorber stacks available

• 38 iron layers:

thickness per layer	~ 1,7	cm
total calorimeter depth	~ 5.1	λ_{int}
interaction length λ_{int}	17	cm
radiation length X_0	1.8	cm

• 30 Tungsten layers:

thickness per layer	~ 1,0	cm
total calorimeter depth	~ 3.9	λ_{int}
interaction length $\lambda_{\mbox{\tiny int}}$	10	cm
radiation length X_0	0.35	cm

Schematic testbeam setups

Particle selection based on cherenkov information

- Particle selection based on cherenkov information
- Additional cuts needed to improve sample purity
- For pions, muon contamination needs to be rejected:
 - Down to 6 GeV => number of hits and center of gravity
 - 4 GeV

=> shower start found in calorimete

2 GeV

=> combination of number of hits, center of gravity and energy deposit in last 3 layers

- Particle selection based on cherenkov information
- Additional cuts needed to improve sample purity
- For pions, muon contamination needs to be rejected:
 - Down to 6 GeV => number of hits and center of gravity
 - 4 GeV => shower start found in calorimeter
 - 2 GeV => combination of number of hits, center of gravity and energy deposit in last layers
- Pre-shower event rejection based on studies with dedicated simulation with particle gun directly before calorimeter

Ring

- first 5 layers
- 6x6 and 12x12 cm² cells

- Particle selection based on cherenkov information
- Additional cuts needed to improve sample purity
- For pions, muon contamination needs to be rejected:
 - Down to 6 GeV => number of hits and center of gravity
 - 4 GeV => shower start found in calorimeter
 - 2 GeV => combination of number of hits, center of gravity and energy deposit in last layers
- Pre-shower event rejection based on studies with dedicated simulation with particle gun directly before calorimeter
- Multi-particle rejection is crucial for FNAL data as visible from energy sum

Recently discovered possible proton contamination up to 6 GeV (no solution yet)

Multi-particle rejection

Two types of multi-particle events:

Event display 10 GeV multi-particle

- With additional muons (due to inefficiency of muon veto)
 - => use tracking algorithms to reject in outer part (6x6 and 12x12 cm² cells)
 - => small difficulties to to split tracks
- Two hadrons (no evidence for electron contamination!) (due to inefficiency of multi-particle counter)
 - => almost never two incoming tracks in calorimeter middle visible
 - => use clustering algorithms (number of clusters, number of hits in clusters)
 - => difficult due to to overlap of distributions (large fluctuations in hadron showers!)
- Combination of both :-(=> still ongoing

Results for event selection

- Muon removed from sample by event selection
- Multi-particle contamination significantly removed by event selection (especially for FNAL)
- Leakage at 10 GeV visible (also present in simulation)

Linearity and comparison to simulation

- Mean energy deposit for tungsten well described by simulation
- Less agreement between data and simulation for iron
- Higher energy deposit in data points to remaining contamination of sample

 Deviation from linearity for all data points less than 3 %

Resolution comparison

Quoted papers: CALICE EM-paper (arXiv:1012.4343) CALICE Analysis Note CAN-036 Resolution fit function:

$$\frac{rms}{mean} = \frac{a}{\sqrt{E}} \oplus b \oplus \frac{c}{E}$$

- Just statistical error taken into account
- Resolution comparable to previous CALICE results
- Resolution worse for tungsten data
- But worse sampling in tungsten
- Also shorter in terms of interaction length

Fit para	meter	a [% * sqrt(E)]
Tungste	n (CERN)	61.8
Iron	(FNAL)	54.4

A scale to compare

- Detector setups very different for both absorber types (sampling, number of layers, etc.)
 - => need scale to compare them => effective radiation (interaction) length

Effective radiation length $X_{0.eff}$:

$$\frac{1}{X_{0,eff}} = \sum \frac{V_i}{X_{0,i}}$$

 $\frac{1}{X_{0,eff}} = \sum \frac{V_i}{X_{0,i}} \quad V_i : \text{fraction of total thickness for } i\text{-th material}$ $X_{0,eff} : \text{radiation length for } i\text{-th material}$ (same for interaction length)

Validation with 6 GeV electrons, longitudinal profile:

Calculated values:

(thickness, X_0 , λ_i from Mokka descriptions of detector)

 $X_{0,eff}$ / mm of calorimeter = 0.0390 • Iron:

 $\lambda_{i,eff}$ / mm of calorimeter = 0.0043

• Tungsten: $X_{0.eff}$ / mm of calorimeter = 0.1152

 $\lambda_{i,eff}$ / mm of calorimeter = 0.0052

Longitudinal profiles

- Longitudinal profiles well described by simulation for tungsten
- Less agreement for iron most likely due to sample contamination

Radial profiles

• Radial profiles very similar in data and simulation (mostly within $\pm 10\%$)

Profile shape agreement

 Shape agreement ξ: (describes overlap)

$$\xi = \sum_{i} min \left| \frac{E_{i}^{MC}}{E^{MC}}, \frac{E_{i}^{data}}{E^{data}} \right|$$

E_i: energy deposit in i-th layer

E: total energy deposit

 On average QGSP_BERT_HP gives best description of shower profiles

Shower decomposition

Divide the shower into following components:

Shower profiles with shower components

- Decomposed longitudinal profiles allow preciser statements about quality of simulations
- In tungsten, the em component peaks in the very first layers and dominates the energy deposit there

=> can distinguish quality of modeling

Results for shower decomposition

Only two components of the shower show a major difference between iron and tungsten

- Predictions by simulation vary strongly between physics lists
- Visible em compnent smaller in tungsten (partially absorbed in nonactive material)
- Neutron component only slightly higher than in iron (also suppressed because of absorption in non-active layers)

Summary

- Event selection for iron and tungsten low energy testbeams shown (Ongoing)
- Linearity of pion data better than 3 % for both testbeams
- Resolution similar to earlier measurements: Tungsten \sim 61 % Iron \sim 54 %
- Shower profiles for tungsten data agree well with simulation
- Shower profiles for iron data show less agreement due to sample contamination
- QGSP_BERT_HP gives on average the best description of the shower profiles
- Decomposed shower profiles enable to make precise descriptions on the quality of the modeling of individual shower components
- Shower decomposition shown and the differences between both absorber types (em and neutron component) investigated which is due to the difference in the X_o/λ_{int} ratio between both absorbers