

Spatial resolution for electrons & uniformity of the response of the AHCAL to Pions

Helmholtz Alliance

Outline

BERGISCHE UNIVERSITÄT WUPPERTAL

- Spatial resolution for electrons
 - Introduction
 - Results

- Uniformity of response of the AHCAL to Pions
 - Introduction
 - Analysis
 - Results

Testbeam setup

- Track: delay wire chambers (DC)
 0.2 mm in x-direction & 0.4 mm in y-direction
- Runs with no ECAL
 - No electrons in HCAL
 - Pion shower already started

Theory in short

- Assume exp. shower profile in lateral direction
- Detector response (CoG) to track position is stepfunction

$$x_{CoG} = x_0 + \frac{\sinh\left(\frac{(x_{track} - x_0)}{s}\right)}{\sinh\left(\frac{b}{2 \cdot s}\right)} \cdot \frac{b}{2}$$

shower

- Shape parameter *s* & *b* depends on energy & layer
- Correct CoG by inverse function

$$x_{CoG}^{corr} = \mathbf{s} \cdot \operatorname{arsinh}\left(\frac{2(x_{CoG} - x_0)}{\mathbf{b}} \cdot \sinh\left(\frac{\mathbf{b}}{2 \cdot \mathbf{s}}\right)\right) + x_0$$

Testbeam data

- Combine data of several runs i.e. several xy-stage positions
- Tile-based coordinates

- Merge to one single tile
- Fit profile
- Correct hits

Resolution

BERGISCHE UNIVERSITÄT WUPPERTAL

Mathias Götze

Results I

3

2.5

2

1.5

1

0.5

CERN 2007. 0°

CERN 2007, 20°

CERN 2011

CERN 2007, 28,3°

CERN 2007, 10°

10

HCAL Layer

15

20

50GeV Tungsten

5

- 10 20 30 40 50 Energy [GeV] COG calculated from several layers \rightarrow every layer values for *s* & *b* are differend!
- Layer-wise correction
 needed → next slide

Mathias Götze

Parameter s/b

0.6

0.4

0.2

0

0

Results II

Uniformity of response of the AHCAL to Pions

Beam characteristics

BERGISCHE Universität Wuppertal

- Beamprofile in y-direction
 smaller
- Integration over full y-direction (higher statistic)
- Energy range 30-80 GeV (π^+)
- Runs without ECAL
- Energy Cut
 - 0.5 mip for each tile (reduce noise)
 - 200 mips muons on total energy

Trackposition ↔ Energy

0.1

ш

ш

- Calculating mean energy in 1mm slices of track position
- Plot deviation ΔE from mean energy E over all slices
- RMS of residuals $\Delta E/E = 0.0029$
- Combination of runs with same energy, but different xy-stage position not directly possible
 - \rightarrow shift in total energy of 1-3%

Trackposition ↔ Energy

- Calculating mean energy in 1mm slices of track position
- Plot deviation ΔE from mean energy E over all slices
- RMS of residuals $\Delta E/E = 0.0029$
- Combination of runs with same energy, but different xy-stage position not directly possible
 - \rightarrow shift in total energy of 1-3%

12/15

Combining Results

- RMS of residuals $\Delta E/E = 0.0038$
- Within errors no anomaly was registered

Check Beamprofile

- No integration in y-direction, just two neighbouring tiles !
- Problem reduced statistic
- Use central 2 cm of 3 cm tiles

Summary & Outlook

- Spatial resolution for electrons
 - Achieve good resolution
 - better than 1.4mm, >20 GeV, steel
 - better than 1.6mm, >20 GeV, thungsten
- uniformity of the response to Pions
 - <0.6 % in RMS of residual ΔE/E over the whole tile (x-direction)
 - No anomaly on "Integrated" y-direction
 - Have to be checked with "software-collimator"
- note (each) coming soon

Backup

Mathias Götze

16/15

Merged

Ш /

ш

ш

Mathias Götze

BERGISCHE

UNIVERSITÄT WUPPERTAI

Example 40GeV

Energy shift

BERGISCHE UNIVERSITÄT WUPPERTAL

Energy shift of **1-3**% of the total energy in runs with the same beam energy but differend stage positions!

Energy shift II

BERGISCHE Universität Wuppertal

_

run number	energy [GeV]	mean energy [mips]	RMS of residual
350107	30	1028.38 ± 1.71	0.0056
350106	40	1392.12 ± 1.44	0.0045
350165	40	1432.55 ± 1.18	0.0029
350104	50	1748.78 ± 1.81	0.0035
350105	50	1746.02 ± 2.30	0.0075
350164	50	1795.33 ± 1.51	0.0033
350101	60	2097.69 ± 1.62	0.0030
350159	60	2146.33 ± 2.41	0.0054
350163	60	2144.12 ± 1.57	0.0026
350096	80	2760.03 ± 2.57	0.0041
350098	80	2804.05 ± 2.98	0.0030
350158	80	2811.76 ± 2.13	0.0031