

Investigation of hadronic shower time evolution

Marco Ramilli

CALICE Meeting 17/09/2012

Overview

•AHCAL test beam at CERN in November:

- Preparation of the physics case
- Timing evolution of hadronic showers
- Investigation of energy decomposition
- •Conclusions and outlook

AHCAL Test-beam at CERN

In November a layer of AHCAL technological prototype will go in test-beam:

- SPS facility at CERN: 10 GeV 180 GeV pions
- Downstream the Tungsten Digital HCAL (W- DHCAL) ~ $4\lambda_{I}$ (interaction lengths)

One AHCAL layer is made 4 HBUs (HCAL Base Unit)

Time-stamping

The ROC will work in **self-triggering** mode:

Montecarlo study to prepare the physics case:

•39 layers of the AHCAL simulated with tungsten absorber (~ $4\lambda_{\mu}$)

- •Shower from $\pi\text{-}$ at 50 GeV and 100 GeV, QGSP_BERT and QGSP_BERT_HP
- •50000 events each
- •No noise
- •Processor to simulate the ROC time-stamping

Radial Hit Time Dependency

Universität Hamburg Der Forschung | der Lehre | der Bildung

Radial distribution of mean hit time in AHCAL position (> 4 λ_1)

•An increase of the mean hit time with radius is observed

•Statistical errors allow to distinguish between physics lists for 100 mm < r < 350 mm

Hadronic Shower Decomposition

Universität Hamburg Der Forschung | Der Lehre | Der Bildung

We want to tag energy deposition according to:

1)Electromagnetic Fraction:

Neutral meson decay in two gammas and pair production

2)Neutron capture:

nuclear de-excitation gamma emission and pair production (also background to $f_{_{FM}}$)

3)Neutron elastic scattering with H nucleus proton emission

4)Neutron inelastic scattering with a nucleus nuclear fragments, alpha particles ... more gamma emission and delta electrons protons, kaons, pions ... more neutrons

5)None of the above – mainly energy deposited by charged hadrons with no neutron in history

Process Timing

Provide MC prediction of each processes timing To be compared with test-beam data

Energy Fractions

whole AHCAL			Sensitive Detector			S. D. w/ Threshold		
0.15 0.1 0.05 0 0 0 0 0 0 0 0 0 0	fem all n n elastic n capture n inelastic	مرابع م م م م م م م م م م م م م م م م م م م		fem all n n elastic n capture n inelastic	0.8 1 action of E ^{all}	0.15	fem n elastic n capture n inelastic all n 0.4 0.6 fra	0.8 1 ction of E _{vis}
	Mean	RMS		Mean	RMS		Mean	RMS
C. Hadron	0.278	0.121	C. Hadron	0.302	0.118	C. Hadron	0.312	0.118
FEM	0.533	0.189	FEM	0.447	0.183	FEM	0.462	0.184
All N.	0.172	0.082	All N.	0.235	0.104	All N.	0.208	0.097
Elastic	0.002	0.002	Elastic	0.098	0.044	Elastic	0.077	0.038
Capture	0.081	0.038	Capture	0.048	0.023	Capture	0.042	0.02
Inelastic	0.09	0.048	Inelastic	0.089	0.052	Inelastic	0.086	0.053

Hit Time

- •Many late events are cut by the threshold
- •FEM and Charged hadron dominant for t < 5 ns
- •Neutrons dominant for t > 5 ns
- •Neutron Capture dominant for t > 20 ns

Hit Time Comparison

Comparison between 50 GeV π - QGSP_BERT and QGSP_BERT_HP:

•Time difference in tail

- •Tail dominated by neutron component:
- •HP predicts less late neutrons above threshold
- •For t_{hit} > 20 ns neutron component dominated by neutron capture

- One full AHCAL layer in test-beam in November 2012
 - → In these days will go at DESY test-beam
- Physics goal: study time development of hadronic shower
- MC simulations to prepare the physics case:
 - At least 50000 GOOD events are needed distinguish between possible physics models
 - → Developed Mokka plugin to tag neutron processes
- Neutron Capture is main responsible for late shower component
 - → HP package predicts less neutron capture processes above 0.5 MIP cut

Physics motivation:

Study development of hadronic shower (time development, data/Montecarlo comparison) 39 layers of AHCAL technological prototype with tungsten absorber had been simulated

UH

Universität Hamburg

DER FORSCHUNG | DER LEHRE | DER BILDUNG

ASIC simulation

fracNelastic = $E_{elastic}/E_{sum}$ $E_{elastic} = \Sigma_i E_{i,elastic}$

Universität Hamburg

For each Hit all the subhit flags contributing to the Hit are counted:

An integer has been used to label processes: 0 = Other process 1 = FEM 2 = Neutron Elastic 3 = Neutron Capture 4 = Neutron Inelastic

If the Hit is flagged as FEM:

•85% of other subhits are FEM too

•Less than 10% are of other processes

•Remaining divided between the three neutronic processes

Flag ambiguity

Flag ambiguity: Energy Fraction

For each Hit all the subhit fractions contributing to the Hit are counted:

If the Hit is flagged as FEM:

•Majority of Hit Energy is FEM

•Small fraction of other processes

•Remaining divided between the three neutronic processes

UH

Universität Hamburg

DER FORSCHUNG | DER LEHRE | DER BILDUNG

Flag ambiguity

