W-AHCAL data analysis

Angela Lucaci-Timoce, CERN on behalf of the CALICE W-AHCAL group

2010 data: CERN PS, 1-10 GeV

- May 2012: CALICE analysis note CAN-036 Shower development of particles with momenta from 1 to 10 GeV in the CALICE Scintillator-Tungsten WHCAL
- Particle ID based on Cherenkov triggers
- To increase samples purity, additional selection cuts using calorimeter's high granularity

2010 data

- Compared data with simulation models including the high precision (HP) package, which describes neutron interactions with E < 20 MeV
- At low beam energies, the energy available for deposition in calorimeter is important: π : $E_{available} = \sqrt{p_{beam}^2 + m_{\pi}^2}$
- QGSP_BERT_HP is found to give very good agreement for both pions and protons (better than 97% for most of the studied variables)

a [MIPs]	4.64 ± 1.92
b [MIPs/GeV]	25.61 ± 0.37
χ^2/ndf	2.7/6

2010 comparison with simulation: longitudinal profiles

 In general agreement better than 95%, with the exception of the first layer

2010 π^+/π^- energy resolution

• Energy spectra of low energy hadrons are non-Gaussian \Rightarrow Energy resolution measured as: $\frac{\sigma_E}{F} = \frac{RMS}{Mean}$

- e⁺: mean visible energy obtained from Novosibirsk fit
 - slightly different slope compared to hadrons
- π^+ , *protons*: statistical means

Calorimeter response is similar for all 3 particle types in the analyzed low energy range (1 GeV $\leq p_{beam} \leq$ 10 GeV)

2011 e^+/e^- selection

Disclaimer: all 2011 figures show work in progress (i.e. not final results)

- CERN SPS, e⁺/e⁻ with energies from 10 to 40 GeV
- Electromagnetic showers in W-AHCAL have small lateral size (~few tiles) and deposit most of their energy in the first 5 layers
- Selection based on clusters (algorithm developed by B. Lutz, DESY-THESIS-2010-048): number of clusters, z-position of cluster, minimum number of hits in the cluster

2011 e^+ comparison with simulation

- To correct for saturation, measured SiPM response curves are scaled by a factor of 0.8 by default \rightarrow This results in disagreement between data and Monte Carlo
- Comparison of energy spectra for individual channels with simulation show that different factors are needed, i.e. 0.65 for channel I/J/K = 46/43/2

e^+ analysis

- Default data: global scaling of 0.8 for all channels
- Rescaled data: 0.65 for I/J/K = 46/43/2, 0.8 for other channels
- Ereco is the mean of Novosibirsk fit
- Linear fitting parameters: $a \cdot x + b$

	a [MIPs]	<i>b</i> [MIPs/GeV]	χ^2/ndf
MC	28.73 ± 0.13	-3.03 ± 0.32	7.2
Rescaled data	29.13 ± 0.13	-3.61 ± 0.33	9.0
Default data	28.54 ± 0.13	-2.71 ± 0.32	6.9

2011 hadron selection

- CERN SPS, mixed beam: electrons, pions, kaons and protons; energies from 10 to 180 GeV
- Electron rejection: based on clusters
- Events with early showers, i.e. shower start in the first 3 calorimeter layers
- Example for run 361186 (+20 GeV): 8 mm Pb absorber in beamline ⇒ still significant fraction of electron events
- Note: most runs taken with 18 mm Pb absorber in beamline

CALICE meeting, Cambridge - 17 September 2012

π^+/π^- analyses

- Significant differences between π^- and π^+
- $\bullet~$ Temperature variations $\leq 5~$ deg. C
- Temperature correction not good enough?

- But even runs with same temperature show differences
- To be able to compare several energies, look at E_{hadron}/p_{beam} ratio, but only up to 100 GeV (to limit leakage effects)

$\pi^+/\pi^-/proton$ analyses

- Drop in calorimeter response to pions (about 5%) for runs taken in Sept./Oct. 2011 (run number > 361600)
- Decrease not visible in proton data (same runs, just different Cherenkov selection)

2011 comparison of data with simulation

• Simulation: QGSP_BERT_HP

π^+ /proton ratio

- For a non-compensating calorimeter (e/h > 1), expect $E_{\pi^+} > E_{proton}$
 - baryon number conservation favours production of leading baryons $\Rightarrow \pi^0 (\rightarrow \gamma)$ production is, on average, smaller in proton induced showers

• Agreement between data and simulation not perfect, but same trend observed

•
$$E_{\pi^+}/E_{proton} \lesssim 1.05$$

 K^{-} vs. K^{+}

- Differences between K^- and K^+
- Let's see what Monte Carlo predicts

Simulation: K^- vs. K^+

- Markers corrrespond to different runs
- Simulation predicts a small difference between K^+ and K^-
- $\bullet\,$ Not due to detector effects, but present already in $\rm GEANT4,$ maybe due to

 $\sigma_{K^-nucleon} > \sigma_{K^+nucleon}$

▶ backup

- 2010 data: CALICE analysis note CAN-036
- 2011 data:
 - e^+/e^- : studies of scaling factors for the SiPM response to obtain a better agreement between data and Monte Carlo
 - π^+/π^- : significant differences in calorimeter response, depending on time (ongoing work to identify the source)
 - K^+/K^- : small statistics, about 1500 events for 60/80 GeV, but with tight cuts
- For many more details: here you can follow our (almost) weekly meetings on • indico

BACKUP SLIDES

2010 data: comparison of methods to measure hadronic energy resolution

- RMS90: RMS of the region containing 90% of the statistics
 - overestimates the energy resolution
- Gauss fit: $\frac{\sigma_E}{E} = \frac{\sigma_{Gauss}}{\mu_{Gauss}}$ • similar to RMS method

Go back to talk

2011 MIP temperature correction

- Idea: use a slope per layer (as for 2010 data)
- Method:
 - find muon hits in hadron runs, using Lars' track finder
 - fit hit energy spectra of hits in a given layer and measure corresponding slope

SiPM response curves

- SiPM signal = $\sum N_{fired \ pixels}$
- But: limited number of pixels (1156) and finite pixel recovery time (20–500ns) ⇒ non-linear response curve (i.e. saturation)
- Ratio of maximum number of fired pixels, N_{tot}(mounted), measured with SiPM mounted on a tile to N_{tot}(bare) measured directly with bare SiPMs (from arXiv:1012.4343)
- The measured saturation curves are scaled with a global factor of 0.8 (average)

Go back to talk

Simulation: K^- vs. K^+

Cross-sections from

http://pdg.lbl.gov/2012/hadronic-xsections/

- Small difference for K^-/K^+
- π^+/π^- the same (for $p_{LAB}>1$ GeV)