ScECAL Beam Test @ FNAL in '08 & '09 - Analysis Status -

Sep 2012 CALICE week @ Cambridge Satoru Uozumi for CALICE-ASIA

– Contents –

- •Results @ previous CALICE week
- •Preliminary estimate of systematic uncertainties
- •2nd-order temperature correction
- •Estimation of EM shower leak by Mokka
- Effect of beam momentum spread
- •Summary & plan

- Temperature correction to MIP calibration constant significantly improves linearity.
- One unknown point ... is ~2.4% constant term reasonable ?

estimation of systematic uncertainties for energy resolution (tentative)

• Systematic uncertainties due to statistical uncertainty of following quantities are estimated by repeating pseudo-experiments. Source $\sigma_{stoch} \pm \Delta \sigma_{stat} \pm \Delta \sigma_{syst}$ (%) $\sigma_{const} \pm \Delta \sigma_{stat} \pm \Delta \sigma_{syst}$ (%)

Electronics Inter-Calib.	13.03 ± 0.03	0.01	2.42 ± 0.01	0.01
MPPC saturation correction	13.03 ± 0.03		2.42 ± 0.01	0.06
Gain measurement	13.03±0.03	0.01	2.42 ± 0.01	0.01
Electronics Inter-Calib.	13.03±0.03	0.01	2.42 ± 0.01	0.01
MIP calib. temp. corr	13.03 ± 0.03	0.01	2.42 ± 0.01	0.01
Mip calibration	13.03 ± 0.03	0.08	$2.42{\pm}0.01{}$	0.07

- No large effect (1~2% on σ_{const} and σ_{stoch}) found in the list above.

2nd-order temperature correction

Saturation correction & temp. correction procedure

- Only very small effect observed.
- Can not be a source of 2.4% constant term.

Mokka simulation of the SceCAL prototype for shower–leak estimation

- Mokka simulation for ScECAL prototype is being developed.
- To estimate shower leakage, ScECAL prototype with

standard-size (18x18cm² x 30 layers) and large-size (54x54cm² x 90 layers) are

simulated.

Estimation of EM shower leak by Mokka

Effect of beam momentum spread

- FNAL beams division told that spread of beam momentum at MT6 would be :
 - 1-3% from beam optics
 - There is an actual measurement only on 1-8 GeV using lead-glass calorimeter,

 $(2.7\pm0.4)\%$ for 1– 4 GeV, $(2.3\pm0.3)\%$ for 8 GeV beams

- Another constraint could come from size of trigger counters (10x10 cm²).
- σ/E of ScECAL ~ 3.5% @ 32 GeV, therefore 1-3% of momentum spread would give non-negligible effect to constant term.
- An issue can we simply take "1-3% by beam optics" for p_{beam}>8 GeV ?

Assumption 1 f beam momentum sprea

- For $p_{beam} <= 8$ GeV, there are measured values of $\Delta p/p$.
- For p_{beam} >8GeV, just take value of $\Delta p/p$ measured at 8GeV
- In principle momentum spread should be smaller in higher energy

Effect of beam momentum spread

- For p_{beam}>8GeV, assume beam momentum spread as :
 - Upper bound of $\Delta p/p$ is taken from 8 GeV
 - Lower bound of $\Delta p/p = 1.5\%$ considering beam optics and effect of multiple scattering.
- With those assumptions, $\Delta p/p$ is subtracted from σ/E at each p_{beam} .

Summary

- Analysis of the ScECAL beam test @ FNAL is ongoing toward publication.
- Obtained results, especially non-zero constant term, are found to be reasonable considering :
 - Systematic uncertainties
 - EM shower leak
 - Beam momentum spread (in extent of available info)
- Is the beam momentum spread information convincing enough?

Will query to FNAL beams division if more precise information available.

- Tuning of Mokka simulation for ScECAL prototype underway.
- Further analyses are expected (man-power wanted!)
 - Pion data analysis combining ScECAL & AHCAL
 - π^0 run analysis

Backups

he Scintillator-Strip Electromagnetic Calorimet

- Sampling calorimeter with Tungstenscintillator sandwich structure.
- Scintillator-strip technology adopted to achieve fine granularity.
- Lateral Segmentation : 1 ~ 0.5 cm
- Huge Number of channels (~10M channels).
- Need to establish sufficient performance while keeping the low production cost.
- First need to establish the

Strip-by-strip response calibration with The scintillator strip response calibration has been done using Minimum Ionizing Particle (MIP) signal by muon beams. A typical muon event MIP equivalent signal

passing the ScECAL

Uncertainty of the response calibration < 1% (statistical error

Electron event selection

- The first task is evaluate the ScECAL performance for electro
- The beam is mixture of e⁻ / π^- / μ^- components.
- Cerenkov counter signals have been used for the electron to however still offline event selection is necessary to purify th electron sample.
- Event selection is done based on :
 - Longitudinal / lateral shower shape
 - $\pi^{\scriptscriptstyle -}$ / $\mu^{\scriptscriptstyle -}$ veto by the HCAL signal located at downstream

- Lateral and longitudinal shower eakage

Deviation from linear (%)

-200

20

10

Beam momentum

30

GeV/c)

Energy Resolution for electrons

- Observed constant term rather large, investigation underway.
- Also due to the shower leakage or the gain variation of photosensor?

π⁰ runs (very preliminary)

- Ability of π^0 reconstruction from 2γ might be useful to improve jet energy resolution.
- Generate π^0 by putting iron on beamline and injecting 16–32 GeV π^- beam.

Further Improvement of the strip response uniformity

WLS fiber (1mm φ)

Photon sensor surface (1x1 mm)

- Light through WLS fiber ... uniform
- Light NOT through the fiber ... not uniform
- Shading the "direct" light improves the nonuniformity.

Position along the strip

Muon MIP signal (preliminary)

