Analysis of DHCAL Data

José Repond Argonne National Laboratory

CALICE Collaboration Meeting September 17 – 19, 2012 Cambridge, UK

DHCAL Data Summary

Testbeam	Configuration	Muons	Secondary beam	Total
Fermilab ¹	DHCAL	6.9	9.3	16.2
	SiW ECAL + DHCAL	2.5	5.1	7.6
CERN ²	DHCAL	5.6	23.4	29.1
TOTAL		15.0	37.8	52.8

¹Contains a significant fraction of 'calibration events' ²Contains no 'calibration events'

Data taking about x4 more efficient at CERN due to

- Longer days (24 versus 12 hours)
- Higher spill frequency (every 45 versus every 60 seconds)
- Longer spills (9.7 versus 3.9 seconds)
- More uniform extractions (no detectable microstructure)
- Machine downtime similar at CERN and FNAL

DHCAL Data Analysis

Торіс	People
Noise studies	Guang Yang and Lei Xia Burak Bilki and José Repond
Calibration studies	Burak Bilki François Corriveau
Muon analysis	José Repond (Daniel Trojand)
Software compensation and weighting studies	Jacob Smith
RPC response simulation	José Repond Lei Xia
MC simulation	Burak Bilki Kurt Francis
Positron and Pion response (FNAL data)	Burak Bilki
CERN data quality	Kazuki Motohashi
Positron and Pion response (CERN data)	José Repond

Noise studies

General comments

- Noise rates at the level of < 1 hits per event
- Response and resolution not affected by noise
- Possible effect on shower shapes

Hits at ground connectors

z

Events with hits in ground connector region

Some layers have no problems Some layers are particularly bad

- \rightarrow Reasons not entirely understood
- \rightarrow Probably related to degraded contact between ground strip and resistive paint

Exclude x=0,1 and y=20-24, 52-56, 84-88 in all analyses

Box events

These events are **rare**, but seem to happen more often at high energies

Developed **two algorithms** to identify and eliminate events containing boxes

Burak: global analysis of all data

<u>José</u>: developed algorithm using runs with highest rate of box events

 \rightarrow Useful for systematic studies

Conclusions from two approaches quite similar

Global analysis: Board occupancy versus N_{hits}

Global analysis

\rightarrow Further cuts depending on

Number of hits on edge of boards Number of hits in ASICs Number of hits on edge of ASIC

Analysis of 54,855,165 events (from FNAL and CERN)

608,909 rejected corresponding to 1.1%

Analysis of run 660505 (300 GeV)

Use

Number of hits on front-end board Number of hits on edge of front-end board Number of hits on neighboring rows of edges

to identify boxes

Red hits inside border Green hits on border of boards

Analysis of run 660505

 \rightarrow Applied to other runs

Applied to simulated 100 GeV pions

23 boxes found in 10,000 events

Assuming simulation close to reality \rightarrow no bias introduced through box rejection

Below 100 GeV

Very low fraction of boxes

Above 100 GeV

Fraction increases dramatically Scattering of box rates probably due to varying beam intensities

Reason for boxes

Not yet understood Most likely related to grounding scheme

Effect of eliminating boxes on spectrum at 300 GeV

Before

After

Lost 45% of the events Tail at high end disappeared Width reduced by 22%

Simulation of RPC response

Use clean **muon** events Tune to average response per layer Two approaches (both useful for systematic studies)

RPC_sim_3

Spread of charge in pad plane using 2 exponentials 6 parameters to be tuned

Reproduces tail towards higher pad multiplicities

RPC_sim_4

Spread of charge in pad plane using 1 exponential
4 parameters to be tuned
Better reproduction of low multiplicity peak
Does not reproduce tail towards higher multiplicities

Simulation of Positrons

GEANT4

Physics list: QGSP _Bert Within MOKKA framework

Fine tuning of the d_{cut} parameter

 d_{cut} : Only 1 point (to be simulated) within a radius of d_{cut} Muon simulation not sensitive to d_{cut} Use 4/8/10 GeV positrons to determine best d_{cut} value

Study effect of changing gas density

Density Comparisons

Gas density affects

- 1) Cross section of interaction of photons in gas
- \rightarrow to be simulated with GEANT4
- $\rightarrow\,$ no effect on muons

2) Gain of RPC

 \rightarrow to be simulated by RPC_sim

Gas density in GEANT4

- Changed corresponding to changes of $\pm 37^0$ C
- → Minimal effect on mean of hit distribution

Effect of position of air gap in cassette

- Moved air gap from back to front of layer
- → Minimal effect on mean of hit distribution

Position Comparison

First analysis of CERN data

Polarity	Momentum	18 mm Pb absorber	No Pb absorber	Beam blocker	Total
Negative	1		540,660		540,660
	2		964,361		964,361
	3		1,006,185		1,006,185
	4		1,030,302		1,030,302
	5		1,185,235		1,185,235
	6		1,268,235		1,268,235
	7		1,546,744		1,546,744
	8		1,196,804		1,196,804
	9		2,044,224		2,044,224
	10		1,007,922		1,007,922
	12		300,666		300,666
	15	305,735			305,735
	20	465,904	438,356		904,260
	30	594,132	410,731		1,004,863
	40	510,736	303,020		813,756
	50	886,201			886,201
	60	497,739			497,739
	80	722,268			722,268
	100	526,323	64,658		590,981
	120	505,465			505,465
	180	123,448			123,448
	210	350,302			350,302
	240	283,554			283,554
	270	206,733			206,733
	300	436,133		704,141	1,140,274
	Total	6,414,673	13,308,103	704,141	20,426,917
Positive	4		1,137,898		1,137,898
	6		655,638		655,638
	8		527,234		527,234
	10		359,768		359,768
	60		10,125		10,125
	150	289,888	230,515		520,403
	180	303,917	211,482	4,920,679	5,436,078
	Total	593,805	3,132,660	4,920,679	8,647,144
Grand total		7,008,478	16,440,763	5,624,820	29,074,061

300 GeV pion showers

Event selection

General cut: 1 cluster in layer 0 with less than 12 hits

Particle	Cerenkov	BC	R	IL	N ₀	$\sum_{i=last-4}^{last} N_i$	$\sum_{i=0}^{last} N_i$
Muons	C ₁ +C ₂ =0	>20	<3.0	-		>0	>10
Electrons	C ₁ ·C ₂ =1	<8	>4.0 for E>12 GeV	-	>4 for E>12 GeV	-	-
Pions	C ₁ +C ₂ =0 or (C ₁ =0 and C ₂ =1)	-	>2.0 - 5.0	>2 for E>3 GeV		-	-
Protons	C ₁ +C ₂ =0	-	>2.0-5.0			-	

- BC ... Longitudinal barycenter
- R ... Average number of hits per active layer
- IL ... Interaction layer
- N₀ ... Hits in layer 0

Spectra at -2 GeV/c

Clean electrons

Clean through-going muons

Two peaks in **pion** spectrum

 \rightarrow What are they?

Simulation of -2 GeV/c pions and muons

150

200

-2 GeV/c Beam

QGSP_Bert 600 LHEP_EMV 400 200 20 40 80 100 120 140

Simulated pion/muon response fit with variable-width Gaussian

Data fit to sum of pion and muon response leaving only their normalizations free

Muon response depends on assumed distribution of angle of incidence

Simulated pion response depends on physics list

Comparison with Steel at High Energy

Note: tail towards low number of hits in Tungsten

Comparison with Simulation – RPC_sim_3

100 GeV/c Pions

Response from 1 – 300 GeV

PS and SPS Measurements

Fits to αE^{β}

Data not-calibrated yet

Resolution from 1 – 300 GeV

	β	α	С
Fit 1		73.1 ±0.1	
Fit 2		51.21 ± 0.18	$\textbf{13.06}{\pm}~0.04$
e fit		29.73 ± 0.18	10.47 ± 0.08

	β	α	с
Fit 1		63.2 ± 0.1	
Fit 2		60.7± 0.3	6.0 ± 0.3
e fit		28.2 ± 0.2	12.6 ± 0.2

PS and SPS Measurements

And what does Wigman's do....

Hadron and jet detection with a dual-readout calorimeter.

N. Akchurin, K. Carrell, J. Hauptman, H. Kim, H.P. Paar, A. Penzo, R. Thomas, R. Wigmans (Texas Tech. & Iowa State U. & UC, San Diego & INFN, Trieste).

Feb 2005

25 pp.

Nucl.Instrum.Meth. A537 (2005) 537-561

DOI: 10.1016/j.nima.2004.07.285

Quote: '...constant term to be added *linearly* to the stochastic term.'

e.g. at E=100 GeV, assuming no constant term, $\sigma = 70\%/\sqrt{E}$, $\sigma = 110\%/\sqrt{E}$, $\sigma = 175\%/\sqrt{E}$

DHCAL Resolutions à la Wigmans

PS and SPS Measurements

Compare to fit to quadratic sum giving

$$\frac{\sigma}{E} = 13.1\% \oplus \frac{51.2\%}{\sqrt{E}}$$

Conclusions

We have a wonderful data set with 53 Million events spanning 1 – 300 GeV in energy

Detailed systematic studies of the data have begun (there is a lot to do and understand)

Simulations start to look like the data

The data from CERN look good

Wigmans is a cheat...

Backup Slides

Calibration of layers

Assign a weight w_i to each layer i

$$N = \sum_{i} w_i N_i$$

Minimize resolution with w_i as parameters

$$w_i = rac{\sum_k C_{ik}^{-1} \mu_k}{\sum_k C_{Mk}^{-1} \mu_k}$$

 $\leftarrow \text{Analytical expression to calculate weights}$

$$\mu_{k} = \frac{\sum_{j=1}^{n} N_{k}^{(j)}}{n} \qquad \text{n....total number of events}$$

and

$$C_{ik} = \frac{\sum_{j=1}^{n} \left(N_i^{(j)} - \mu_i \right) \left(N_k^{(j)} - \mu_k \right)}{n - 1}$$

Method pioneered by ATLAS

Weight Parameters as a Function of Beam Energy

Fit value provides parameter values used in weights function at each energy

Layer Weights

Layer number - Layer number of first interaction

Weights as a function of showerlayer for 10 GeV/c pions

Fit to

$$w(i) = \alpha e^{-\beta i} + \gamma i + \delta$$

Currently errors on w_i are calculated via a Monte Carlo smearing technique, since uncertainties in μ_i and C_{ij} are correlated

These errors are still under study and not quite understood yet