

Micromegas input to the DBD *CALICE, Cambridge Sep.19th 2012*

- 1. Micromegas for calorimetry
- 2. Results expected in 2012-2013
- 3. Open R&D issues

Micromegas for calorimetry

- Like most Micro Pattern Gas Detectors, the principal use of Micromegas is for tracking
 - For calorimetry, the main challenge is the instrumentation of thousands of m2
- Advantage for a HCAL

- <u>No space charge effect</u> (e- avalanche over ~ 100 um)

Proportional signals

 \rightarrow best suited for a semi-digital HCAL?

High rate capability

- \rightarrow (very) forward region of LC experiment
- Little electron diffusion
 - \rightarrow Low hit multiplicity
- Simple gas mixtures (non-flammable, non toxic)
- No ageing
- Weak P/T dependence
 - which can be suppressed by mesh voltage

• Known issues: essentially sparks

Create <u>dead time and reduce locally the efficiency</u>

- Detector itself resistant: mesh is made from steel wires
- Front-end electronics require dedicated protections
 - \rightarrow increase PCB price

Design & performance, a summary

- 1 m2 chamber design
 - <u>Modular design fully scalable to larger size</u>: 1 m2 = 6 * (32*48) cm2
 - Thickness with / without steel covers = 9 / 7 mm
 - 7 mm = 4 mm (PCB with ASIC, pads and mesh) + 3 mm (Ar gas)
 - Dead area inside gas volume < 2 %
- Usual working conditions:
 - Noise ~ 0.25 fC
 - Threshold of 1-2 fC (MICROROC ASIC)
 - Gas mixture of Ar/CF4/iC4H10 95/3/2
 - Gas gain of $3000 \rightarrow MIP$ charge is 5-10 fC
 - 99.98% of active channels
- Performance to MIPs inside SDHCAL Fe structure
 - Efficiency = 96.4 +/- 1.6 %
 - Multiplicity = 1.25 +/- 0.08

Results expected in 2012-2013

- Spark rate with muons, pions and showers
 - RD51 test beam beginning November 2012
- <u>Linearity</u> of a virtual 50 layers Micromegas from the longitudinal shower profile
 - CALICE test beam mid November 2012
 - 46 RPCs + 4 Micromegas inside the SDHCAL structure
 - 10 energy points between 5 to 150 GeV
- Find optimal gas gain and thresholds for best linearity
 - \rightarrow assess linearity improvement with a semi-digital RO
- Next year
 - use set of measurements to validate our simulation
 - use simulation to calculate the expected energy resolution

Chamber scalability to larger size

- Current chamber size (1 m2) can be increased in <u>both directions</u>
 - ASIC chain can be as long as 3 m
 - Assembly procedure should be defined + Drift cathode may be segmented
- DIF + interDIF area can be reduced
 - DIF design can be easily optimised
 - Merge DIF+interDIF into a single board
- ASIC power consumption can be reduced (S/N > 20), also power-pulsing already implemented

Open issues and future R&D

- Industrialisation
 - Bulk process uses industrial techniques and is well suited for mass production
 - <u>Technology transfer to industry has started</u>, steered up by the RD51 collaboration
 Strong interest from LHC experiment for high luminosity upgrades
 - **Resistive Bulk** for ATLAS forward muon spectrometer (target total area of ~ 1200 m2) Eltos (Italy), Cirea (France)
 - Large area GEMs for CMS forward region (216 triple GEMs → target area of ~ 1000 m2) NewFlex (Korea), Techtra (Poland), Tech Etch

Open issues and future R&D

- Spark protections
 - Current scheme: <u>Diode networks on PCB & also inside ASIC</u> No dead ASIC so far, protection seem fully efficient
 - Maybe ASIC diodes only are sufficient?
 Last prototype to be constructed in October
 will have 1 ASIC without on-PCB protections
 - Maybe they are not
 - \rightarrow on-going R&D on resistive layer (ANR funding)
- EM calorimetry
 - Thinner chambers, Smaller pads
 - <u>MC study</u>: http://lappweb.in2p3.fr/~chefdevi/Work_LAPP/ECAL_uM/

high medium

low

high gain

4-bit DAC

low gain

BCID counter

24

** *

RAM

discriminators

encoder

10-bit DAC

charge reamplifier

calibration