Pipelined SAR ADC for SiPM readout

Tobias Harion

Kirchhoff Institut für Physik Universität Heidelberg

Outline

- Motivation & Requirements of the ADC
- ADC structure

 Track / Hold, SAR ADC, etc...
- Parameter Calculation and Estimation
- Summary & Time Plan

Motivation and Requirements

 Quatization (one ADC per channel): charge integration timing voltage ramp

Resolution - 12 bits ? - SiPM Optimization
 3 different types of signal to quantize:

 calibration signal, only a few pixel fired
 physical MIP-like signal, large fluctuation
 timing voltage ramp

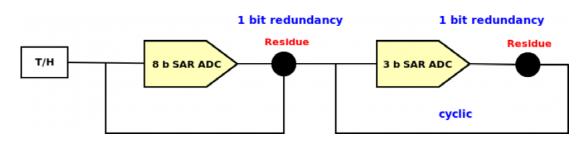
Resolution Requirements

- Calibration signal
- i. clearly seperated peak 1 mV electronic noise 12 bits
- ii. up to **10** pixels, range of ~300mV (small range)
- iii. only a small portion of the total signals
- Physical signal Much larger uncertainty Less resolution
- i. large fluctuation due to Landau Distribution
- ii. signal uncertainty due to the detector pixel uniformity 4-5mV (15 pxls, MPPC 50um pitch device)
- iii. most time, 8 bits sufficient Quantization noise (3.7mV)
- TAC ramp signal
- i. same ramp speed by SPIROC
- ii. 10 bits 400ps bin size <100ps quantization error
- iii. if **ns** resolution sufficient, only **8 bits** required

Requirements

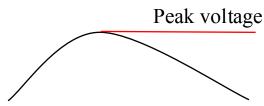
• Resolution: 8 bits for most of time

12 bits for calibration only (shortly)

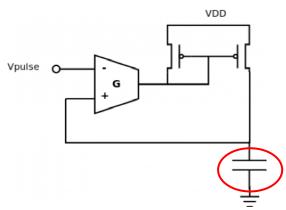

10 bits necessary for precise timing

Other Requirements

Performance	Parameter
Area	~ 100μm * 700 μm
Sampling Rate	> 1 MHz
power	μW w/ pulsing
SNDR, SFDR	descent

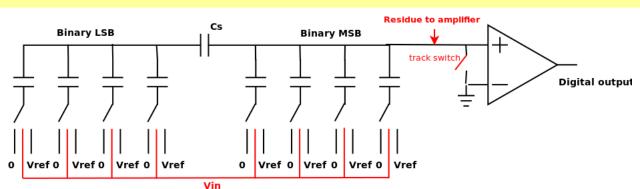

ADC Structure

- 8 bits low power (!), small size ADC, **SAR** is the perfect choice
- sampling rate easily exceeds 1 Mhz. only µs needed for analog memory, less distorsion
- the extra 2 bits (10bits) required by timing can be pipelined
- the additional 2 bits (12bits) can be cyclic (only shortly)



Peak Sensing - Track/ Hold

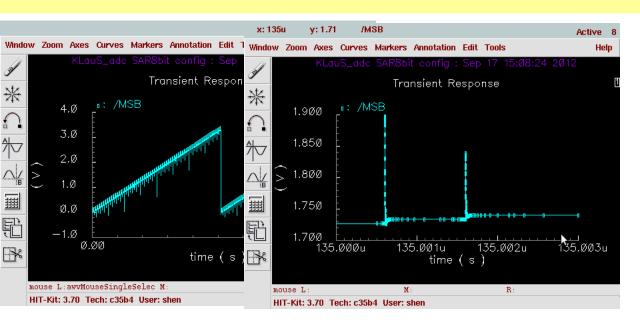
Peak sensing using a **peak** detector and holder (PDH)



Peaking time is input pulse shape dependent, easier to control with PDH

Memory capa can be merged to SAR capa

Succussive Approximation Register ADC



In order to counteract the Mismatch Error and Nonlinearity

According to the AMS datasheet, the minimum of unit capa is $7\mu m^* 7\mu m$, at the moment $10\mu m^* 10\mu m$ is chosen

The capa total size is 100μm * 32μm, Memory Depth of 4, 100μm * 150μm, very small in size

Simulation for the 8b SAR

8 bits Scan MC DNL/INL < 0.5 LSB Zoom of each step, response fast enough

Summary

- SAR ADC structure chosen
- 8 bits for physical signal, 10 & 12 bits can be pipelined
- Size estimation 100μm * 600μm
- Pulsed power consumption μW

• Design started, Tapeout estimation Apr. 2013