

<u>Micromegas for a SDHCAL,</u> <u>status and perspectives</u>

CALICE collaboration meeting Cambridge, 16-19 Sep. 2012

M. Chefdeville, CNRS/IN2P3/LAPP, Annecy

Overview

- Introduction
 - Micromegas for gaseous calorimetry
 - Characteristics of constructed chambers
 - First look at behaviour in hadron showers

• Experience and plans in the GRPC-SDHCAL

• Conclusion

Micromegas for gaseous calorimetry

- Jet energy resolution at a future LC
 - <u>Granularity</u> \rightarrow minimize confusion
 - <u>Energy resolution</u> \rightarrow measure neutral hadrons
- Digital HCAL: small cells to minimize confusion
 - <u>Saturation</u> (core, π^0) \rightarrow tail in Nhit distribution

· Semi-digital approach

- Require some proportionality
 - → Micromegas
- Real improvement on resolution?
 - \rightarrow Simulation: says yes, data will tell soon

Simulation from S. Mannai, UCL Louvain, GRPC/SDHCAL group

Constructed chambers: design

- Modular approach: $1 \text{ m}^2 = 6 * (32*48) \text{ cm}^2$
 - Dead zones below 2 %, easily scalable to larger sizes
- Quite thin for a Micromegas of that size: 9 mm
 - Active Sensor Unit = 4 mm (PCB with pad and mesh & ASICs)
 - Gas = 3 mm
 - Cathode steel cover = 2 mm (also part of the absorber)

32x48 pads of 1 cm² on back side

Constructed chambers: operational characteristics

- Signal, noise and thresholds
 - Gas gain up to some 10^4 (Ar mix.)
 - MICROROC noise of 1500 e- \rightarrow 5 sigma threshold is 6000 e- only
- Performance to MIPs (in $Ar/CF_4/iC_4H_{10}$ but any mixture providing a gain of 3.10³ is fine)
 - Efficiency > 95% @ a gain of 3.10^3 , with 2% variation over whole chamber
 - Multiplicity between 1.1-1.2 (depending on angle)
- Stability: 99.98% of channels operational; No lost ASIC \rightarrow efficient spark protections

Spark rate and working gas gain

- Spark rate so far very manageable but no precise number yet
 - \rightarrow RD51 test beam in November, counting setup with μ , π and showers
- Spark rate depends on the total avalanche charge
 - Broad dE/dx spectrum in hadron showers (MIPs, X-rays, hadrons, alpha's...)
 - But what gas gain is needed for a Micromegas SDHCAL?
- Data from June 2011 test beam suggests that a high MIP efficiency is not necessary

Number of hits after 1 λ_{int} of Fe: tails at 350 and 375 V are similar (~ a factor of 2 in gas gain)

Experience in the SDHCAL

- SDHCAL is a collective achievement
 - SDHCAL structure consists of 51 Fe layers of 1.5 cm thickness with 1.3 cm gaps (~ 5.5 λ_{int}) \rightarrow CIEMAT
 - Chambers, ASIC, DAQ \rightarrow participation of several IN2P3 groups (IPNL, LAL, LLR, LAPP)
- First test with GRPCs + 1 Micromegas inside, slot 47/50: October 2011
 - No common DAQ, standalone USB running with external PMT triggers, ~ 1 million events at various energies
- At the back of the calorimeter, there is no saturation and 3 thresholds show linear behaviour
 → need to get closer to shower maximum to learn about the semi-digital readout

Micromegas running in GRPC-SDHCAL, 2012

- "Intermediate" CALICE DAQ to allow running of SDHCAL in 2012
 - DIF / DCC : Control signals from DCCs through HDMI, data from DIFs through USB
 - LAPP contribution: DIF design + DIF and DCC firmware (G. Vouters)
- Micromegas running, 2 chambers at slot 49 & 50 / 50
 - Common DAQ operated in RAMFULL mode (internal trigger when 1 ASIC memory is full)
 - Sometimes, noisy ASIC in Micromegas chambers saturates the DAQ (see next slides)
 - \rightarrow Most of the time, we were out of the DAQ but there are some runs with both RPCs and Micromegas
- Penetrating muons were used to monitor chamber performance
 - We are doing good, high efficiency and low multiplicity

Monte Carlo / data comparison

• Straight-forward digitisation

- Compare Geant4 energy to threshold
 - + Add known multiplicity from diffusion
- Tune threshold to reproduce inefficiency to muons
- Number of hit from pions
 - Apply threshold tuned with muons
 - LHEP and QGSP reproduce distribution well
 - Next step: space distributions

Noisy ASICs - troubleshooting

- What we observed: suddenly a quiet ASIC becomes noisy and send many RAMFULL triggers
 - Keeps the DAQ busy, happened 20 times in 14 days at SPS
 - Data previously recorded are not lost \rightarrow No real time loss
- We have reproduced this effect in a systematic way at LAPP
 - It occurs above a certain working voltage \rightarrow certainly linked to sparks
 - Reading the slow control of ASICs, it appears that thresholds bits are modified
- Solutions
 - Seem to be always the same ASIC \rightarrow possible replacement but little spares
 - Working at low gas gains (< 350 V), but maybe we don't want that
 - Sending a slow control periodically (e.g. between SPS spills) WORKS

Cosmic run at LAPP Scintillator shadow on 3 chb.

Near-future test beam inside SDHCAL

- We have a strong physics case:
 - <u>Measure linearity</u> of a 50 layer Micromegas SDHCAL from longitudinal shower profiles with 4 Micromegas and 46 RPCs (proposed by C. Adloff)
 - Use RPCs to identify the shower starting layer
 - Measure Nhit in Micromegas chambers which virtually move inside the calorimeter
- From a fit of the longitudinal profile
 - Integral yields the average number of hit
 - Effect of leakage on linearity can be corrected for
 - With various sets of thresholds,

improvement using semi-digital readout can be assessed

Proof of principle? Statistics? Beam time? → Simulation & testbeam data

Linearity from shower profile - simulation (1/2)

- Simulation
 - We use the geometry of the 48 layers RPC/SDHCAL
 - We do 4 energy points at 20, 40, 70 and 100 GeV
 - At each energy: 20000 pion events
 - We consider 3 test chambers at layer 15, 25 and 40
- Analysis
 - Find shower starting layer z0
 - Measure Nhit in <u>3 test chambers</u>
 - Measure Nhit in <u>all chambers</u> w.r.t. z0

Profile at 70 GeV from 3 chambers at 15-25-40

Linearity from shower profile – simulation (2/2)

- Fit of the longitudinal profile
 - We use the function from R.K. Bock et al., NIM 186 (1981) 533

Combination of 2 Power laws and Exponential decays for EM and H part of shower + some e/h ratio

$$dE = k [ws^{a-1} e^{-bs} + (1 - w) t^{c-1} e^{-dt}] dx$$

- Results
 - Profiles obtained with 3 chambers compare well to the one obtained with the calorimeter
 - It is possible to correct the average Nhit for leakage \rightarrow significant correction above 40 GeV

Linearity from shower profile - TB data (1/2)

- Data set from May 2012 TB at SPS/H2
 - Selection of pion events (very similar to the one of Y. Karyotakis explained in the Analysis session)
 - We use runs at 20, 40, 70 and 100 GeV of small statistics: 4500, 25300, 8700 and 7850 events respectively
 - 3 test chambers are the "visually best" RPCs at layer 15, 25 and 40.
- Analysis
 - Essentially the same as in simulation BUT
 - We apply chamber to chamber calibration constants given by (ϵ . m), measured with beam muons

Linearity from shower profile - TB data (2/2)

• Results

- Good agreement with profiles obtained with 3 and 40 chambers at 20 and 40 GeV Less good at 70 and 100 GeV, difference of 3% and 5% respectively
- Conclusions
 - Monte Carlo shows that the method works
 - Discrepancies in data at high energy to be understood
 - We are confident that the method works

Conclusion of the study

- We are confident that the method works and can be applied during next TB
 - 4 chambers should be available by October, final positions to be defined, probably 10, 20, 35 and 50
- Needed statistics / energy point
 - Best profile fit is with 45 chambers at 40 GeV (25 k events), let's define this as our goal
 → with 4 chambers: 45 / 4 *25 k ~ 250 k events per energy point
- Number of energy points during the CALICE/Micromegas period of 1 week
 - With an <u>acquisition rate for pions of $10 \text{ Hz} \rightarrow 24$ energy points</u>
 - Taking into account the unexpected, we should be able to complete 10 points between 5 and 150 GeV

Conclusion and future plans

- <u>Micromegas chambers of 1 m² are a nice piece of R&D</u>
 - Excellent performance so far
 - Exciting measurement to come inside GRPC-SDHCAL during November test beam We are getting organised with Lyon colleagues
 - 1) Start as tail catcher during GRPC master week
 - 2) Insertion inside the calorimeter at fixed positions during Micromegas master week
- <u>During LHC shut-down</u>
 - Hopefully, lot of data to keep us busy on analysis/publication
 - Continue R&D: resistive Micromegas, thinner chambers with smaller pads (possibly ECAL)
- With the discovery of a Higgs-like particle at CERN and Japan interest on hosting a LC
 - Reinforce efforts on physics analyses within LAPP LC group