SiD Workshop August 21-23, 2012

Electronics and DAQ Editors Report

Overview

In report:

- Electronics Architecture
- KPIX readout
- DAQ Hardware

Electronics Architecture

Total data rate from each front-end relatively small, thus can combine data from several front-ends to reduce number of connections to the outside of the detector

Front-End ASICs/electronics transmit event data to concentrator 1 boards

- Digital interface (optical or electrical, e.g. LVDS)
- Concentrator 1 boards close to front-end, combining data-streams from several front-end ASICs
- Zero-suppression either at front-end or on concentrator 1 boards
 - No additional processing needed at this stage

Event data from concentrator 1 boards are combined in concentrator 2 boards

Multiplexing of concentrator 1 board event data onto fewer fibers

Event data is transmitted to top or side of detector

- ATCA crate (see later) to process and switch data packets
- Online farm for filtering (if necessary)

EM Barrel Example

- Top-of or next-to Detector
 - Readout to outside-Detector crates via 3 Gbit/s fibers
 - Single 6-slot crate to receive 36 fibers: 5 RCE modules
 - Total out of EM Barrel partition: 1.6 Gbytes/s
 - Available bandwidth: > 144 Gbit/s/module (and is scalable)
 - Sorting, data reduction
- Can be switched into ATCA processors for data-filtering/reduction or online farm
 - A few 10-G Ethernet fibers off detector

KPiX ASIC: generic R&D toward system-on-chip designs

SLAC

32×32 array = 1024 channels Designed to be

- · bump-bonded to a Si sensor, or
- bumped to a hybrid for large area detectors (RPC's, GEM's, etc)
- Reset Control Storage Cap Source Amplitude 1 of 4 Shaper Amplifier Storage Capacitor Control Trigger Time & Leakage Digitization Logic Range Control Current Servo Trigger Threshold Register Logic 1 of 4 Calibration Pulse Calibration Car
- For each channel of the system-on-chip
 - » 4 samples per train with individual timestamps
 - » auto-triggering
 - » internal per-channel 13-bit ADC
 - » automatic range switching for large charge depositions (10pC)
 - » bias current servo for DC coupled sensors
 - » power cycling: power down during inter-train gaps (20 uW avg for ILC time structure)
 - » built-in calibration
 - » nearest neighbor trigger ability
 - » high-gain feedback capacitor for tracker application
 - » dual polarity for GEM and RPC applications
 - » external trigger for test beam
- Digital IP core with serial data IO (only 4 signals)

Collaboration: SLAC, UCSC, U. of Oregon, UC Davis

0.25µm TSMC

KPiX, An Array of Self Triggered Charge Sensitive Cells Generating Digital Time and Amplitude Information", D. Freytag. G. Haller, et al. SLAC-PUB-13462, 2008. 4pp (IEEE NSS Oct 2008) KPiX, an 1,024 cell ASIC, Design and Performance, accepted for presentation at NSS 2012

1024-channel KPiX

Concentrator-1

DAQ Architecture

- 1 ATCA crate for each sub-system for partitioning reasons
 - One custom ATCA module type
 - RCE: Reconfigurable Cluster Element, full-mesh topology

DAQ Sub-System

Based on ATCA (Advanced Telecommunications Computing Architecture)

- Next generation of "carrier grade" communication equipment
- Driven by telecom industry
- Incorporates latest trends in high speed interconnect, next generation processors and improved Reliability, Availability, and Serviceability (RAS)
- Essentially instead of parallel bus backplanes, uses high-speed serial communication and advanced switch technology within and between modules, plus redundant power, etc

Intro: Typical (5 slot) ATCA shelf (i.e. crate)

COB + 48 channel R/O + 80 Gbits/sec Ethernet RTM

Single-element (GEN-II) mezzanine board

SLAC

SD configuration flash

System-On-Chip

System is flexible: current and future deployments

SLAC

- <u>Deployed</u> currently:
 - For the LCLS experiment detector readout DAQ
 - For the Heavy Photon Search test-beam DAQ
 - As readout technology for IBL stave testing (for example CERN's SR1 & U Geneva IBL stave loading site)
 - For the pixel planar sensor test beam readout
 - As the test-stand for LSST Camera CCD read-out
- Chosen as the core technology for:
 - The LSST camera's DAQ system
 - The alternative final readout scheme for IBL as well as the AFP (ATLAS Forward Proton) silicon readout
 - The pixel beam telescope readout for an upcoming SLAC test beam
 - The ATLAS CSC ROD replacement in 2014
 - The AFP timing detector readout for 2014

Summary

- KPIX ASIC can be used in several sub-systems, see detector sub-system talks for applications
- SiD data rate dominated by noise & background hits
- Event data rate for SiD can be handled by current technology, e.g. ATCA system being built for LCLS, LHC, etc
- No filtering required in DAQ. Could move event data to online farm/off-line for further filtering/analysis
- Still: investigate filtering in ATCA processors