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Higg’s factories and beyond: 

 

ILC and alternate schemes 



Outline 

• International Linear Collider (ILC) 

– Parameters 

– Superconducting RF and Nano-beams 

– Staging: 250 GeV to 1 TeV 

• e+/e- Ring Colliders 

– Parameters  

– AC Power Consumption and Construction Cost 

– Tunneling near CERN 

• μ+/μ- Colliders 

– Staging and Parameters 

– R & D 
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ILC in a Nutshell 

13.12.12 

Damping Rings 

Polarised electron source 

Polarised 

positron 

source 

Ring to Main Linac (RTML) 

(inc. bunch compressors) 

e- Main Linac 

Beam Delivery System (BDS) 

& physics detectors 

e+ Main Linac 

Beam 

dump 

not too scale 

310 x football pitch 

Total site length (500 GeV CM) 30.5 km 

SCRF Main Linacs 22.2 km 

RTML (bunch compressors) 2.8 km 

Positron source 1.1 km 

BDS / IR 4.5 km 

Damping Rings (circumference) 3.2 km 



ILC Parameters 



ILC Overview 

• Designed and optimized for 500 GeV Ecm; 

upgradeable to 1 TeV 

• L500 ~ 1.8e34 with 162 MW wall plug 

– L1000 ~ 5e34 with 300 MW wall plug 

• R & D program completed: Detailed Design  

– Technology Demonstrated  (SCRF) 

– 8%-scale Demonstration ‘E-XFEL’ (DESY) in 2015 

– IR optics & tuning Demonstration ‘ATF-II’ (KEK)  

• Physics Studies, Detector / Machine Design 

Report completed 02.2013 

– Culmination of 6 year design study 
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Fermilab – Niowave SCRF Cavity Team 



ILC Cavity Assembly  
(Helium tank, mag. shield, tuner and coupler) 

Graphics by 

Rey. Hori 



Linac building block: the Cryomodule:  
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Graphics by 

Rey. Hori 
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12 GeV cavities: overall performance CEBAF 12 GeV upgrade 

72/85 @ admin limit (85%) 

Cavities made by RI (Germany); 

Followed ILC Process 

Reported 11.2012 by F. Pilat 

Vertical Test; 1500 MHz 7 cell; 

10% gradient correction 



Global Progress in ILC Cavity Gradient Yield   

11 Rongli Geng LCWS12, 10/22-26, 2012 

(94+/-6)% 

acceptable 

for ILC mass 

production  



IT optics and 

tuning beam 

demonstration 

ATF-II at KEK 

Model Final-Focus 

optics system 

Beam from ultra-low 

emittance damping ring 



KEK - ATF2 Facility Layout 

120 m 



ATF-2  achieves 72.8 nm 
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Luminosity Upgrade 

• Concept: increase nb from  1312 → 2625 
– Reduce linac bunch spacing  554 ns → 336 ns 

– Increase pulse current  5.8 → 8.8 mA 

– Increase number of klystrons by  ~50%  

 

• Doubles beam power  ×2 L (3.6×1034cm-2s-1) 

 

• Damping ring: 
– Electron ring doubles current (389mA  778mA) 

– Positron ring: possible 2nd (stacked) ring (e-cloud limit) 

 

• AC power: 161 MW  204 MW (est.) 
– AC power increased by ×1.5 

– shorter fill time and longer beam pulse results in higher RF-
beam efficiency (44%  61%) 
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TeV upgrade: Construction Scenario 

BDS Main Linac 
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IP 

BC 

start civil construction 

500GeV operations 

500GeV operations 

Installation/upgrade shutdown 

civil construction + installation 

final installation/connection 

removal/relocation of BC 

Removal of turnaround etc. 
Installation of addition 

magnets etc. 

Commissioning / operation at 1TeV 
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TeV Upgrade 
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<26 km ? 

(site length <52 km ?) 

Main Linac 

<Gcavity> = 

31.5 MV/m 

  Geff  ≈ 

22.7 MV/m 

(fill fact. = 

0.72)  

IP 

central region 

 <10.8 km ? 

Snowmass 2005 baseline 

recommendation for TeV upgrade: 

  Gcavity = 36 MV/m ⇒ 9.6 km 

  (VT  ≥ 40 MV/m) 

  

Based on use of 

low-loss or re-

entrant cavity 

shapes 
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250 GeV – Staged ILC 
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central region 

15.4 km 

125 GeV transport 

Half the linac 

Full-length BDS tunnel & vacuum (TeV) 

½ BDS magnets (instrumentation, CF etc) 

1 RTML LTL 

5km 125 GeV transport line 

 

Extended tunnel/CFS already 500 GeV stage 
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ILC at low/high Ecm 

• Low Ecm operation of upgraded ILC: 

– L250 ~ 3e34; Wall plug 200 MW 

– Possible Higgs Factory 

• High Ecm ~ 1.5 TeV  

– L1500 ~ 6e34; Wall plug 340 MW 
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ILC Parameters 



Two Alternatives to ILC (1): 

1. e+/ e- storage ring-based colliders 

– Low Energy ‘factories’ 

– Assume substantial injection complex 

– Enormous tunnel complex (step toward VLHC) 

– Based on extrapolation of established technology 

– R & D needed 

• Only 2 parameters:  

– Ring Size and  

– Site Power consumption 
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Civil engineering cost 

and strategy  



From K. Yokoya 
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From K. Yokoya: 



From K. Yokoya 

Low emittance 

operation 

planned for 

Super KEK-B 



Collider ‘Wall Plug’ AC Power use: 
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ILC and 80 km ring: ILC -H ILC-nom Ring - H Ring - t 

E_cm (GeV) 250 500 240 350 

SRF Power to Beam (MW) 5.2 10.5 100 100 

Eff. RF Length (m) 7,837 15,674 600 1200 

RF klystron peak efficiency (%) 65 65 65 65 

klystron operating margin, HVPS, 

Klystron Aux and klystron water 

cooling (% inefficiency) 

20* 20 

Overall system RF efficiency (%) 10 14 45 45 

Cryo (MW) 16 32 20 40 

Normal Conducting (exc. Injector 

complex) (MW) 

6 10 120** 120 

Injector complex 32 32 16*** 16 

Conventional (Air, lighting, ..) 6 6**** 18 18 

Total (exc. detector) 112 153 396 416 

* 5% for operating margin, 2% for auxiliaries, 3% for HVPS and 10% for water cooling 

** assume 1.5 kW / m tunnel inclusive (ILC avg. 3 kW / m) 

*** from SSC / Fermilab injector (linac + LEB + MEB); assumes LHC not needed 

**** 6 MW for 30 km beam tunnel complex; ~3x more for 80 ring 



ILC AC Power loads: 

 

10 March, 2013 Marc Ross, SLAC 27 



Questions asked for ‘Snowmass’: 

CSS2013 / P5 planning process: 

• What the required parameters and key 

characteristics of lepton / gamma colliders 

in the Higg's factory range? with physics 

capabilities far beyond the LHC? at what 

cost? How does a Higgs factory scale 

cost-wise to a TeV scale linear collider? 

 

• Cost comparisons with concepts can only 

be done parametrically. 

10 March, 2013 Marc Ross, SLAC 28 



ILC ‘value’ estimate: 

‘Value’ is the 

direct cost of 

goods and 

services 

Appropriate for 

in-kind projects 

ILC: 7.8 B ILCU 

+ 23 million 

labor person-

hours 
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Cavities and 
Cryomodules 

L-band  High Level RF 

Conventional Facilities 

Installation 

Cryogenics 

Magnets and Power 
Supplies 

Vacuum 

Instrumentation 

Dumps and 
Collimators 

Integrated Controls 
and LLRF 

Computing 
Infrastructrure 

Other High Level RF 

Area-specific Systems 

ILC TDR Value Estimate 



Parametric ‘value’ costing for 

TeV–class machines (KILCU)*: 

• Civil Construction:  35 / m 

• Utilities:    5000 / MW 

• Superconducting RF 180 / m (inclusive)** 

• ‘Conventional Acc.’  35 / m 
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TLEP-t 

quantity MILCU 
ILC 

quantity MILCU 

Civil Construction km 80 3000 34 1200 

Power and cooling MW 416 2000 162 800 

SRF (incl. packing) km 1.2 / .7 250 22 4000 

‘Conventional’ km 160 5500 *** 12 800 

Installation km 80 100 34 100 
Total 11000 7800** 

* 1 ILCU = USD 01.2012 

** cryogenics not included – reuse LHC assumed; 900 MILCU included for ILC 

*** Conventional Acc. (Magnets, vacuum, etc) cost – scale reduced 2x for ring 

Institutional Labor is part 

of the project cost and 

must also be analyzed. 
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European Strategy Submission – 

Krakow 08.2012 by CERN Civil 

Engineering: John Osborne 

Presented at: 



Jura & Salève: Karst Geology 

• Tunneling risk 

• Karst (green): 
– “Dissolution by layers of 

soluble bedrock, typically 

limestone” 

– “rocky ground, caves, 

sinkholes, underground 

rivers, and the absence of 

surface streams and 

lakes” 

– France; Kwangsi in China; 

Yucatán Peninsula;  

Florida in the United 

States 
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Karst geology: 

Florida US 

03.2013 



– Mountain area consists of Limestones and  evaporates 

• For 10% of tunnel  

• Difficult tunneling conditions 

– Local and  unpred ictable karst features  

» Water conduits  

» High flow rates (600L/ sec) 

– Water transports silt-clay sed iments 

» Difficult to drawing off water through  

    pressure relief holes 

» Increase of water inflow over time 

» Difficulties in removal of the water  

» Risk of aquifer pollution & depletion  

– Anhydrites -> ‘badrock’ causes swelling 

» Heaving of the tunnel invert 

» Structural instabilities 

» Probably low risk for 80km Lakeside option 

     but high risk for 80km Jura option  

 21 February 2013 John Osborne & Caroline Waaijer (CERN)  35 

LEP tunnel collapse 

CE considerations                         Tunneling 
Geneva plain  

Underneath Lake Geneva 

Through Jura and  Salève Mountains 

Example of tunnel invert heave Chienberg tunnel, Switzerland 



Potential locations 

• Pre-feasibility study performed by CERN and the 

specialized  firm ARUP. 

–  Focused  on  

• geology & hydrogeology,  

• tunneling & construction,  

• environmental impacts 

 

 
 

– Result: for the 80km long tunnel location 2 ‘80km Lakeside’ 

is most feasible. 
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• Optimization stud ies for the project configuration have been 

started  

– Bypass tunnel in geological and  environmental sensitive area  

– Inclined  access tunnel in urban area 

  

• More optimization stud ies needed  

– Incline tunnel? 

– More bypass tunnels? 
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CE considerations                      Optimization  



Ring Collider R & D items: 

• Much related beam physics will be 

studied at Super KEK-B (2015 ) 

– IR optics and vertical emittance will be checked. 

SuperKEKB will try to x10 smaller vert emittance 

(than LEP) with full beam-beam. 

• CERN-region ring ‘optimization’ work 

– Avoiding Karst geology (conclusion of 21.02 

meeting) 

• Large ring cost is not substantially 

smaller than ILC 

– Energy consumption is excessive 
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Two Alternatives to ILC (2): 

2. Muon colliders 

– Very High energy without enormous tunneling 

Basic R & D needed in four technical areas 

1. Normal Conducting RF 

2. Superconducting RF 

3. High Field magnets 

4. Targeting 

System demonstrations:  

1. beam cooling and  

2. high power-on-target  
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The U.S. Muon Accelerator Program 

Mark Palmer 

Frontier Facilities Meeting 
University of Chicago 

February 25, 2013 



Muon Accelerators 

February 25, 2013 
Mark A. Palmer | Frontier Capabilities Workshop (U. Chicago, Feb 25-26, 

2013)  
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2010 ~2020 ~2030 

Muon Accelerator  

R&D Phase 

Proton Driver 

Implementation  

(Project X @ 

FNAL) 

Intensity Frontier 

Energy Frontier 

The Muon Accelerator Program Timeline 

February 25, 2013 
Mark A. Palmer | Frontier Capabilities Workshop (U. Chicago, Feb 25-26, 

2013)  42 

MAP Feasibility 

Assessment 

Advanced 

Systems R&D 

   Muon Ionization Cooling 

Experiment (MICE) 

IDS-NF 

RDR 

Proposed Muon Storage Ring 

Facility (nSTORM) 

Evolution to Full Spec n Factory 

Collider Conceptual 

 Technical Design 

Collider Construction   

Physics Program 

Proj X Ph I 

Proj X Ph II 

Proj X Ph III & IV 

Indicates a date when 

an informed decision 

should be possible 



Muon Collider Concept 

February 25, 2013 
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2013)  
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Proton source:   

For example PROJECT X 

at 4 MW, with 2±1 ns 

long bunches 

Goal:  

Produce a high intensity  

m beam whose 6D phase 

space is reduced by a 

factor of ~106-107 from 

its value at the 

production target 

Collider:  √s = 3 TeV  

Circumference  4.5km 

L = 3×1034 cm-2s-1 

m/bunch = 2x1012 

s(p)/p = 0.1% 

eN = 25 mm, e||N=70 mm 

b* = 5mm 

Rep. Rate = 12 Hz 

Muon Collider Block Diagram 



Parameter Units

Initial	

Cooling

Upgraded	

Cooling	/	

Combiner

CoM	Energy TeV 0.126 0.126 1.5 3.0

Avg.	Luminosity 1034cm-2s-1 0.0017 0.008 1.25 4.4

Beam	Energy	Spread % 0.003 0.004 0.1 0.1

Circumference km 0.3 0.3 2.5 4.5

No.	of	IPs 1 1 2 2

Repetition	Rate Hz 30 15 15 12

b* cm 3.3 1.7 1	(0.5-2) 0.5	(0.3-3)

No.	muons/bunch 1012 2 4 2 2

No.	bunches/beam 1 1 1 1

Norm.	Trans.	Emittance,	eTN mm-rad 0.4 0.2 0.025 0.025

Norm.	Long.	Emittance,	eLN mm-rad 1 1.5 70 70

Bunch	Length,	ss cm 5.6 6.3 1 0.5

Beam	Size	@	IP mm 150 75 6 3

Beam-beam	Parameter	/	IP 0.005 0.02 0.09 0.09

Proton	Driver	Power MW 4♯ 4 4 4

Higgs	Factory Multi-TeV	Baselines

Muon	Collider	Baseline	Parameters

♯Could	begin	operation	at	lower	beam	power	(eg,	with	Project	X	Phase	2	beam)

Muon Collider Parameters 

February 25, 2013 
Mark A. Palmer | Frontier Capabilities Workshop (U. Chicago, Feb 25-26, 

2013)  
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3-4 MeV CoM  

Energy Spread 



126 GeV Higgs Factory   

February 25, 2013 45 

Major advantage for Physics of a m+m Higgs 

Factory: possibility of direct measurement of the 

Higgs boson width (~4MeV FWHM expected) 

Reduced cooling: 

 eN =0.3mmrad,  

e||N =1mmrad  

Mark A. Palmer | Frontier Capabilities Workshop (U. Chicago, Feb 25-26, 

2013)  

s-channel coupling of Muons to HIGGS with high cross sections: 

Muon Collider of with L = 1032 cm-2s-1 @ 63 GeV/beam (50000 Higgs/year)  

Competitive with e+/e- Linear Collider with L = 2. 1034 cm-2s-1 @ 126 GeV/beam 

Sharp resonance: momentum spread ~ 4 × 10-5  Han and Liu 

hep-ph 1210.7803  

~30 T HTS Final 

Cooling Solenoids 



Overview of R&D Areas 

• Design Studies 
– Proton Driver 

– Front End 

– Cooling 

– Acceleration and Storage 

– Collider 

– Machine-Detector Interface 

– Work closely with physics and 
detector efforts 

• Major System Demonstration 
– The Muon Ionization Cooling 

Experiment – MICE 

• Major U.S. effort to provide key 

hardware:  RF Cavities and 

couplers, Spectrometer Solenoids, 

Coupling Coils 

• Experimental and Operations 

Support 

 

• Technology R&D 
– Normal Conducting RF 

• Vacuum RF Cavities with reduced 
breakdown rates in high magnetic fields 

• Cavity Materials 

• RF Cavities filled with high pressure gas 

– Superconducting RF 
• Demonstrating good Q0 performance 

with Niobium on Copper cavities 
– Performance 

– Fabrication techniques 

– Magnets 
• High field solenoids for cooling channel 

application 

• 10T dipole design (synergistic with LHC 
upgrade activities) 

• Rapid cycling magnets for high energy 
hybrid synchrotron 

• Shielded magnets for m decay in rings 

– Target and Absorbers 
• Liquid jet targets capable  

• Capture solenoid technology 

 

February 25, 2013 
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MAP Technology Highlights 

Successful 
Operation of 805 MHz 
“All Seasons” Cavity 
in 3T Magnetic Field 

under Vacuum  

MuCool Test Area/Muons Inc 

World Record  
HTS-only Coil 
15T on-axis field 

16T on coil 

PBL/BNL 

Demonstration of 
High Pressure RF 

Cavity in 3T Magnetic 
Field with Beam 

Extrapolates to  
m-Collider Parameters 

MuCool Test Area 

Breakthrough in HTS 
Cable Performance 

with Cables Matching 
Strand Performance 

FNAL-Tech Div 
T. Shen-Early Career Award 
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Muon collider R & D 
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Summary: 
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