

Future Accelerators

Marc Ross, SLAC - ILC

Higg's factories and beyond:

ILC and alternate schemes

Marc Ross, SLAC

Outline

• International Linear Collider (ILC)

- Parameters
- Superconducting RF and Nano-beams
- Staging: 250 GeV to 1 TeV

e+/e- Ring Colliders

- Parameters
- AC Power Consumption and Construction Cost
- Tunneling near CERN
- μ+/μ- Colliders
 - Staging and Parameters
 - R & D

İİL

ILC in a Nutshell

ILC Parameters	5		Baseline	1st Stage	L Upgrade	TeV U A	pgrade B
Centre-of-mass energy	E_{CM}	GeV	500	250	500	1000	1000
Collision rate	f_{rep}	Hz	5	5	5	4	4
Electron linac rate	flinac	Hz	5	10	5	4	4
Number of bunches	n_b		1312	1312	2625	2450	2450
Bunch population	N	$\times 10^{10}$	2.0	2.0	2.0	1.74	1.74
Bunch separation	Δt_b	ns	554	554	366	366	366
Pulse current	I_{beam}	mA	5.79	5.8	8.75	7.6	7.6
Average total beam power	P_{beam}	MW	10.5	5.2	21.0	27.2	27.2
Estimated AC power	P_{AC}	MW	162	128	205	300	300
RMS bunch length	σ_z	mm	0.3	0.3	0.3	0.250	0.225
Electron RMS energy spread	$\Delta p/p$	%	0.124	0.190	0.124	0.083	0.085
Positron RMS energy spread	$\Delta p/p$	%	0.070	0.152	0.070	0.043	0.047
Electron polarisation	P_{-}	%	80	80	80	80	80
Positron polarisation	P_+	%	30	30	30	20	20
Horizontal emittance	$\gamma \epsilon_x$	μm	10	10	10	10	10
Vertical emittance	$\gamma \epsilon_y$	nm	35	35	35	30	30
IP horizontal beta function	β_x^*	mm	11.0	13.0	11.0	22.6	11.0
IP vertical beta function (no TF)	eta_y^*	mm	0.48	0.41	0.48	0.25	0.23
IP RMS horizontal beam size	σ_{τ}^{*}	nm	474	729	474	481	335
IP RMS veritcal beam size (no TF)	σ_y^*	nm	5.9	7.7	5.9	2.8	2.7
Luminosity (inc. waist shift)	L	$\times 10^{34} {\rm ~cm^{-2} s^{-1}}$	1.8	0.75	3.6	3.6	4.9
Fraction of luminosity in top 1%	$L_{0.01}/L$		58.3%	87.1%	58.3%	59.2%	44.5%
Average energy loss	δ_{BS}		4.5%	0.97%	4.5%	5.6%	10.5%
Number of pairs per bunch crossing	N_{pairs}	$\times 10^{3}$	139.0	62.4	139.0	200.5	382.6
Total pair energy per bunch crossing	E_{pairs}	TeV	344.1	46.5	344.1	1338.0	3441.0

ILC Overview

- Designed <u>and optimized</u> for 500 GeV E_{cm}; upgradeable to 1 TeV
- L₅₀₀ ~ 1.8e34 with 162 MW wall plug
 L₁₀₀₀ ~ 5e34 with 300 MW wall plug
- R & D program completed: Detailed Design
 - Technology Demonstrated (SCRF)→
 - 8%-scale Demonstration 'E-XFEL' (DESY) in 2015
 - IR optics & tuning Demonstration 'ATF-II' (KEK) \rightarrow
- Physics Studies, Detector / Machine Design Report <u>completed 02.2013</u>
 - Culmination of 6 year design study

-

Niobium Superconducting Cavities 1.3 GHz 9-Cell ILC/TESLA

*Entry level niobium cavity delivered in 3 months (other options available).

in stock for quic delivery

Let us help you customize the exact niobium structure you need from 28 MHz to 3.9 GHz and beyond.

NIOWAVE Accelerating Your Particles

www.niowaveinc.com sales@niowaveinc.com 517.999.3475

Contact us to discuss your needs

Fermilab – Niowave SCRF Cavity Team

Linac building block: the Cryomodule:

CEBAF 12 GeV upgrade 12 GeV cavities: overall performance

Vertical Test; 1500 MHz 7 cell; 10% gradient correction

Jerrerson Lab 12 GeV C100 Cavity Final Emax

Jefferson Lab

Global Progress in ILC Cavity Gradient Yield

ATF2 beam line (Jan.2009~)

Photo-cathode RF gun (electron source) Previous EXT line (~Jun.2008)

Damping Ring

120 m

ATF-2 achieves 72.8 nm

Outline

- International Linear Collider (ILC)
 - Parameters
 - Superconducting RF and Nano-beams
 - Staging: 250 GeV to 1 TeV

e+/e- Ring Colliders

- Parameters
- AC Power Consumption and Construction Cost
- Tunneling near CERN
- μ+/μ- Colliders
 - Staging and Parameters
 - R & D

ÌÌĿ

- Concept: increase n_b from
 - Reduce linac bunch spacing
 - Increase pulse current
 - Increase number of klystrons by

 $\begin{array}{l} 1312 \rightarrow 2625 \\ \textbf{554 ns} \rightarrow \textbf{336 ns} \\ \textbf{5.8} \rightarrow \textbf{8.8 mA} \\ \textbf{\sim50\%} \end{array}$

- Doubles beam power $\rightarrow \times 2 L (3.6 \times 10^{34} \text{cm}^{-2} \text{s}^{-1})$
- Damping ring:
 - Electron ring doubles current ($389mA \rightarrow 778mA$)
 - Positron ring: possible 2nd (stacked) ring (e-cloud limit)
- AC power: 161 MW \rightarrow 204 MW (est.)
 - AC power increased by ×1.5
 - shorter fill time and longer beam pulse results in higher RFbeam efficiency (44% \rightarrow 61%)

İİL

TeV upgrade: Construction Scenario

TeV Upgrade

İİL

Global Design Effort

250 GeV – Staged ILC

Full-length BDS tunnel & vacuum (TeV) ¹/₂ BDS magnets (instrumentation, CF etc) 1 RTML LTL 5km 125 GeV transport line

Extended tunnel/CFS already 500 GeV stage

21-Feb-13 ILCSC

ÌÌL

Global Design Effort

• Low E_{cm} operation of upgraded ILC:

- L₂₅₀ ~ 3e34; Wall plug 200 MW
- Possible Higgs Factory
- High E_{cm} ~ 1.5 TeV

- $L_{\rm 1500}$ ~ 6e34; Wall plug 340 MW

İİL

ILC Parameters			Baseline	1st Stage	L Upgrade	TeV U A	pgrade B
Centre-of-mass energy	E_{CM}	GeV	500	250	500	1000	1000
Collision rate	fren	Hz	5	5	5	4	4
Electron linac rate	flinac	Hz	5	10	5	4	4
Number of bunches	n_b		1312	1312	2625	2450	2450
Bunch population	N	$\times 10^{10}$	2.0	2.0	2.0	1.74	1.74
Bunch separation	Δt_b	ns	554	554	366	366	366
Pulse current	I_{beam}	mA	5.79	5.8	8.75	7.6	7.6
Average total beam power	P_{beam}	MW	10.5	5.2	21.0	27.2	27.2
Estimated AC power	P_{AC}	MW	162	128	205	300	300
RMS bunch length	σ_z	mm	0.3	0.3	0.3	0.250	0.225
Electron RMS energy spread	$\Delta p/p$	%	0.124	0.190	0.124	0.083	0.085
Positron RMS energy spread	$\Delta p/p$	%	0.070	0.152	0.070	0.043	0.047
Electron polarisation	P_{-}	%	80	80	80	80	80
Positron polarisation	P_+	%	30	30	30	20	20
Horizontal emittance	$\gamma \epsilon_x$	μm	10	10	10	10	10
Vertical emittance	$\gamma \epsilon_y$	nm	35	35	35	30	30
IP horizontal beta function	β_x^*	mm	11.0	13.0	11.0	22.6	11.0
IP vertical beta function (no TF)	β_y^*	mm	0.48	0.41	0.48	0.25	0.23
IP RMS horizontal beam size	σ_x^*	nm	474	729	474	481	335
IP RMS veritcal beam size (no TF)	σ_y^*	nm	5.9	7.7	5.9	2.8	2.7
Luminosity (inc. waist shift)	L	$\times 10^{34} \ {\rm cm}^{-2} {\rm s}^{-1}$	1.8	0.75	3.6	3.6	4.9
Fraction of luminosity in top 1%	$L_{0.01}/L$		58.3%	87.1%	58.3%	59.2%	44.5%
Average energy loss	δ_{BS}		4.5%	0.97%	4.5%	5.6%	10.5%
Number of pairs per bunch crossing	N_{pairs}	$\times 10^3$	139.0	62.4	139.0	200.5	382.6
Total pair energy per bunch crossing	E_{pairs}	TeV	344.1	46.5	344.1	1338.0	3441.0

1. e+/ e- storage ring-based colliders

- Low Energy 'factories'
- Assume substantial injection complex
- Enormous tunnel complex (step toward VLHC)
- Based on extrapolation of established technology
- R & D needed
- Only 2 parameters:
 - <u>Ring Size and</u>
 - <u>Site Power consumption</u>

Civil engineering cost and strategy \rightarrow

Ring Collider Proposed Parameters

Name		LEP2 for comparison	LEP3	TLEPt	SuperTRI STAN	CW250	Summers
Circumference	km	26.7	26.7	80	60	233	15.00
Beam energy	GeV	104.5	120	175	200	250	120
Bunch population	10^10	57.5	100	75	249.2	48.5	48.5
Number of bunches/beam		4	4	12	1	41	3
Number of IP		4	2	2	1	1	1
Bunch collision frequency	kHz	44.91	44.91	44.97	5.00	52.75	65.10
geo.emit(x)	nm	48	25	20	3.2	3.6	3.6
geo.emit(y)	nm	0.25	0.1	0.1	0.017	0.00022	0.00099
betax	mm	1500	200	200	30	20	20
betay	mm	50	1	1	0.32	0.6	0.6
sigx	micron	268	71	63	9.8	8.5	8.5
sigy	micron	3.536	0.32	0.32	0.0738	0.0244	0.0244
sigz	mm	16.1	2.3	2.5	1.4	6.67	6.67
half.cross.angle	mrad	0	0	0	35	17	34
bending radius	km	3.096	2.62	9	7.65	29	1.9
radiation loss/turn	GeV	3.408	6.99	9.3	18.5	11.9	9.7
Damping partition		1.1	1.5	1	2	2	2
radiation power (2beams)	MW	22	100	100	74	98	98
Tune shift/IP (x)		0.025	0.09	0.05	0.017	0.0007	0.0014
Tune shift/IP (y)		0.065	0.08	0.05	0.155	0.23	0.2
Equilibrium energy spread	%	0.22	0.23	0.22	0.196	0.126	0.236
Luminosity per IP	10^34	0.0125	1.07	0.65	5.2	7.6	4.4
Data taken from the papers in red in the prewvious pa							
Not given in the refer	er values						
Not given in the reference. Assumed.						Fro	om K. Yokoya

Proposed Ring Colliders

- Several authors suggested possibilities of e+e- ring colliders for Ecm>200GeV.
 - A) T.Sen, J.Norem, Phys.Rev.ST-AB 5(2002)031001 C=233km tunnel for VLHC

From K. Yokoya:

- B) A.Blondel and F.Zimmermann, CERN-OPEN-2011-047, Jan.2012 (Version 2.9). arXiv:1112.2518. Also IPAC12 TUPPR078. LEP3, DLEP. LEP3Day June 18. 2nd LEP3Day Oct.23 (yesterday!)
- C) K.Oide, "SuperTRISTAN: A possibility of ring collider for Higgs factory", <u>KEK meeting on 13 Feb 2012</u>. SuperTRISTAN
- D) G.Lyons, arXiv:1112.1105 [physics.acc-ph], Feb.2012.
 PhD thesis. Nanobeam version of A) IPAC12 TUPPR008
- E) D.Summers, et.al. "Rapid Recycling Magnets Tests & Simulations", Muon Accelerator Program 2012 Winter Meeting, 4-8 Mar.2012. SLAC. Small ring version of D) See also IPAC12 TUPPR008
- There seems to be more: China, etc.

R&D Items of Ring Colliders

From K. Yokoya

- Momentum band-width
 - bucket height must be > η (OK with a bit higher V_{RF})
 - arc is OK (light sources accept > 4%)
 - FFS is not easy
 - chromaticity L* η/β_v * larger than existing covery
 - synchrotron oscillation should be included (very rapid)
 - 2% is perhaps feasible (non-educated guess)
- Vertical emittance
 - light sources can reach $\varepsilon_{gy} \sim 1 \text{pm}$ at low energy
 - but colliders at high energy?
 - still far above the fundamental limit due to radiation opening angle (1/ $\!\gamma$)
 - but ref D)E) assume too small emittance
- Synchrotron radiation power O(100MW)
 - 4x LEP2

Low emittance operation planned for Super KEK-B

Collider 'Wall Plug' AC Power use:

ILC and 80 km ring:	ILC -H	ILC-nom	Ring - H	Ring - t
E_cm (GeV)	250	500	240	350
SRF Power to Beam (MW)	5.2	10.5	100	100
Eff. RF Length (m)	7,837	15,674	600	1200
RF klystron peak efficiency (%)	65	65	65	65
klystron operating margin, HVPS, Klystron Aux and klystron water cooling (% inefficiency)			20*	20
Overall system RF efficiency (%)	10	14	45	45
Cryo (MW)	16	32	20	40
Normal Conducting (exc. Injector complex) (MW)	6	10	120**	120
Injector complex	32	32	16***	16
Conventional (Air, lighting,)	6	6****	18	18
Total (exc. detector)	112	153	396	416

* 5% for operating margin, 2% for auxiliaries, 3% for HVPS and 10% for water cooling

** assume 1.5 kW / m tunnel inclusive (ILC avg. 3 kW / m)

*** from SSC / Fermilab injector (linac + LEB + MEB); assumes LHC not needed

**** 6 MW for 30 km beam tunnel complex; ~3x more for 80 ring

Marc Ross, SLAC

Table 11.9. Summary of power loads (MW) by Accelerator sections (500 GeV baseline)

			NC		Conve		
Accelerator section	RF Power	RF Racks	magnets & Power supplies	Cryo	Normal load	Emerger load	Total ncy
e ⁻ source	1.28	0.09	0.73	0.80	1.02	0.16	4.08
e ⁺ source	1.39	0.09	4.94	0.59	2.19	0.35	9.56
Damping Ring	8.67		2.97	1.45	1.84	0.14	15.08
RTML	4.76	0.32	1.26	part of ML cryo	0.12	0.14	6.59
Main Linac	58.1	4.9	0.914	32	8.10	5.18	109.16
BDS			10.43	0.41	0.24	0.28	11.36
Dumps					1		1.00
IR			1.16	2.65	0.09	0.17	4.07
Total	74.2	5.4	22.4	37.9	14.6	6.4	161

ic

Marc Ross, SLAC

Questions asked for 'Snowmass':

CSS2013 / P5 planning process:

- What the required parameters and key characteristics of lepton / gamma colliders in the Higg's factory range? with physics capabilities far beyond the LHC? at what cost? How does a Higgs factory scale cost-wise to a TeV scale linear collider?
- <u>Cost comparisons with concepts can only</u> <u>be done parametrically.</u>

ILC 'value' estimate:

'Value' is the direct cost of goods and services

ilc

Appropriate for in-kind projects

ILC: <u>7.8 B ILCU</u> + <u>23 million</u> <u>labor person-</u> <u>hours</u>

Marc Ross, SLAC

Para Para TeV-	ame -cla	etric 'va ss ma	alue' co chines	ostin (KIL	g for CU)*: •	
Civil Const	ruct	ion:	35 / n	า		
• Utilities:		5000	5000 / MW			
Supercond	ucti	ng RF	180 /	m (in	clusive)**	
'Conventio	nal	Acc.'	35 / n	า		
		TLEP-t quantity	MILCU	ILC quantity	/ MILCU	
Civil Construction	km	80	3000	34	1200	
Power and cooling	MW	416	2000	162	800	
SRF (incl. packing)	km	1.2 / .7	250	22	4000	
	km	160	5500 ***	12	800	
Conventional'						
Installation	km	80	100	34	100	
Installation Total	km	80	100 11000	34	100 7800 **	

** cryogenics not included – reuse LHC assumed; 900 MILCU included for ILC *** Conventional Acc. (Magnets, vacuum, etc) cost – scale reduced 2x for ring Institutional Labor is part of the project cost and must also be analyzed.

10 March, 2013

Marc Ross, SLAC

Outline

- International Linear Collider (ILC)
 - Parameters
 - Superconducting RF and Nano-beams
 - Staging: 250 GeV to 1 TeV
- e+/e- Ring Colliders
 - Parameters
 - AC Power Consumption and Construction Cost
 - Tunneling near CERN
- μ+/μ- Colliders
 - Staging and Parameters
 - R & D

İİL

EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH ORGANISATION EUROPÉENNE POUR LA RECHERCHE NUCLÉAIRE

CERN - GS Department

EDMS Nr: 1233485 Group reference: CERN/GS-SE

27 July 2012

European Strategy Submission – Krakow 08.2012 by CERN Civil Engineering: John Osborne

PRE-FEASIBILITY STUDY FOR AN 80KM TUNNEL PROJECT AT CERN

John Osborne (CERN), Caroline Waaijer (CERN), ARUP, GADZ

Presented at:

Joint Snowmass-EuCARD/AccNet-HiLumi LHC meeting 'Frontier Capabilities for Hadron Colliders 2013'

chaired by Lucio Rossi (CERN), William Barletta

from Thursday, February 21, 2013 at **09:00** to Friday, February 22, 2013 at **14:20** (Europe/Zurich) at **CERN (40-S2-D01 - Salle Dirac)** 40-S2-D01

Jura & Salève: Karst Geology

Tunneling risk

ilc

- Karst (green):
 - "Dissolution by layers of soluble bedrock, typically limestone"
 - "rocky ground, caves, sinkholes, underground rivers, and the absence of surface streams and lakes"
 - France; Kwangsi in China;
 Yucatán Peninsula;
 Florida in the United
 States

Florida US 03.2013

Tunneling

Geneva plain Underneath Lake Geneva Through Jura and Salève Mountains

- Mountain area consists of Limestones and evaporates

- For 10% of tunnel
- Difficult tunneling conditions
 - Local and unpredictable karst features
 - » Water conduits
 - » High flow rates (600L/ sec)
 - Water transports silt-clay sediments
 - » Difficult to drawing off water through pressure relief holes
 - » Increase of water inflow over time
 - » Difficulties in removal of the water
 - » Risk of aquifer pollution & depletion
 - Anhydrites -> 'badrock' causes swelling
 - » Heaving of the tunnel invert
 - » Structural instabilities
 - » <u>Probably</u> low risk for 80km Lakeside option but high risk for 80km Jura option

LEP tunnel collapse

Example of tunnel invert heave Chienberg tunnel, Switzerland

Potential locations

- Pre-feasibility study performed by CERN and the specialized firm ARUP.
 - Focused on
 - geology & hydrogeology,
 - tunneling & construction,
 - environmental impacts

 Result: for the 80km long tunnel location 2 '80km Lakeside' is most feasible.

					Risk							
	water ingress	heaving ground	weak marls	hydro carbons	support & lining	ground response & convergence	hydrostatic pressure & drainage	Pollution of aquifers	effect of shafts on nature	effects of shafts on urban areas	Total	Feasibilit
Jura 80	5	3	0	0	5	4	5	5	4	2	33	Low
Lake 80	2	0	3	3	3	3	2	2	3	2	23	
Lake 47	1	0	2	2	2	2	1	1	2	5	18	Hig!

John Osborne & Caroline Waaijer (CERN)

CE considerations

- Optimization studies for the project configuration have been started
 - Bypass tunnel in geological and environmental sensitive area
 - Inclined access tunnel in urban area
- More optimization studies needed
 - Incline tunnel?
 - More bypass tunnels?

John Osborne & Caroline Waaijer (CERN)

- Much related beam physics will be studied at Super KEK-B (2015 →)
 - IR optics and vertical emittance will be checked.
 SuperKEKB will try to x10 smaller vert emittance (than LEP) with full beam-beam.
- CERN-region ring 'optimization' work
 - Avoiding Karst geology (conclusion of 21.02 meeting)
- Large ring cost is not substantially smaller than ILC
 - Energy consumption is excessive

Two Alternatives to ILC (2):

2. Muon colliders

Very High energy without enormous tunneling

Basic R & D needed in four technical areas

- 1. Normal Conducting RF
- 2. Superconducting RF
- 3. High Field magnets
- 4. Targeting

System demonstrations:

- 1. beam cooling and
- 2. high power-on-target

The U.S. Muon Accelerator Program

Mark Palmer Frontier Facilities Meeting University of Chicago February 25, 2013

Muon Accelerators

Accelerator	Energ	y Scale	
Cooling Channel	~200	MeV	
MICE	160-240	MeV	27
Muon Storage Ring	3-4	GeV	
nSTORM	3.8	GeV	
Intensity Frontier n Factory	10-25	GeV	
Low Energy NF	10	GeV	
IDS-NF 2.0	25	GeV	
Current IDS-NF	10	GeV	
s-Channel Higgs Factory	~126	GeV CoN	
Energy Frontier M Collider	> 1	TeV CoM	
<i>Opt. 1</i>	1.5	TeV CoM	
<i>Opt. 2</i>	3	TeV CoM	
Opt. 3	6	TeV CoM	

February 25, 2013

🛟 Fermilab

Program Baselines

Fehreiladuon Accelerator Program Timeline

Fermilab Muon Collider Concept

Muon Collider Block Diagram

Muon Collider Parameters **7** Fermilab

Muon Collider Baseline Parameters								
Higgs Factory Multi-TeV Baselines								
			Upgraded		3-4 Me	V CoM		
		Initial	Cooling /		Energy	Spread		
Parameter	Units	Cooling	Combiner					
CoM Energy	TeV	0.126	0.126	1.5	3.0			
Avg. Luminosity	10 ³⁴ cm ⁻² s ⁻¹	0.0017	0.008	1.25	4.4			
Beam Energy Spread	%	0.003	0.004	0.1	0.1			
Circumference	km	0.3	0.3	2.5	4.5			
No. of IPs		1	1	2	2			
Repetition Rate	Hz	30	15	15	12			
b*	ст	3.3	1.7	1 (0.5-2)	0.5 (0.3-3)			
No. muons/bunch	10 ¹²	2	4	2	2			
No. bunches/beam		1	1	1	1			
Norm. Trans. Emittance, e_{TN}	mm-rad	0.4	0.2	0.025	0.025			
Norm. Long. Emittance, e _{LN}	mm-rad	1	1.5	70	70			
Bunch Length, S _s	cm	5.6	6.3	1	0.5			
Beam Size @ IP	mm	150	75	6	3			
Beam-beam Parameter / IP		0.005	0.02	0.09	0.09			
Proton Driver Power	MW	4 [♯]	4	4	4			

[#]Could begin operation at lower beam power (eg, with Project X Phase 2 beam) Mark A. Palmer | Frontier Capabilities Workshop (U. Chicago, Feb 25-26,

Fermilab 126 GeV Higgs Factory

s-channel coupling of Muons to HIGGS with high cross sections: Muon Collider of with L = 10^{32} cm⁻²s⁻¹ @ 63 GeV/beam (50000 Higgs/year) Competitive with e+/e- Linear Collider with L = 2. 10^{34} cm⁻²s⁻¹ @ 126 GeV/beam

Higgs boson width (Γ ~4MeV FWHM expected)

February 25, 2013

Mark A. Palmer | Frontier Capabilities Workshop (U. Chicago, Feb 25-26,

Overview of R&D Areas

- Design Studies
 - Proton Driver
 - Front End
 - Cooling

🛟 Fermilab

- Acceleration and Storage
- Collider
- Machine-Detector Interface
- Work closely with physics and detector efforts

Major System Demonstration

- The Muon Ionization Cooling Experiment – MICE
 - Major U.S. effort to provide key hardware: RF Cavities and couplers, Spectrometer Solenoids, Coupling Coils
 - Experimental and Operations Support

- Technology R&D
 - Normal Conducting RF
 - Vacuum RF Cavities with reduced breakdown rates in high magnetic fields
 - Cavity Materials
 - RF Cavities filled with high pressure gas
 - Superconducting RF
 - Demonstrating good Q₀ performance with Niobium on Copper cavities
 - Performance
 - Fabrication techniques

– Magnets

- High field solenoids for cooling channel application
- 10T dipole design (synergistic with LHC upgrade activities)
- Rapid cycling magnets for high energy hybrid synchrotron
- Shielded magnets for μ decay in rings
- Target and Absorbers
 - Liquid jet targets capable
 - Capture solenoid technology

MAP Technology Highlights

Successful **Operation of 805 MHz** "All Seasons" Cavity in 3T Magnetic Field under Vacuum

MuCool Test Area/Muons Inc

Muon Ionization

Cooling Channel

Breakthrough in HTS Cable Performance with Cables Matching **Strand Performance**

FNAL-Tech Div T. Shen-Early Career Award

Demonstration of **High Pressure RF** Cavity in 3T Magnetic **Field with Beam**

> Extrapolates to μ-Collider Parameters

MuCool Test Area 20131

World Record **HTS-only Coil** 15T on-axis field 16T on coil PBL/BNL

(cago, Feb 25-26,

Muon collider R & D

ilr iit

Summary:

ilc...